HOME





Mostow Rigidity Theorem
In mathematics, Mostow's rigidity theorem, or strong rigidity theorem, or Mostow–Prasad rigidity theorem, essentially states that the geometry of a complete, finite-volume hyperbolic manifold of dimension greater than two is determined by the fundamental group and hence unique. The theorem was proven for closed manifolds by and extended to finite volume manifolds by in 3 dimensions, and by in all dimensions at least 3. gave an alternate proof using the Gromov norm. gave the simplest available proof. While the theorem shows that the deformation space of (complete) hyperbolic structures on a finite volume hyperbolic n-manifold (for n >2) is a point, for a hyperbolic surface of genus g>1 there is a moduli space of dimension 6g-6 that parameterizes all metrics of constant curvature (up to diffeomorphism), a fact essential for Teichmüller theory. There is also a rich theory of deformation spaces of hyperbolic structures on ''infinite'' volume manifolds in three dimensions ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Quadratic Form
In mathematics, a quadratic form is a polynomial with terms all of degree two (" form" is another name for a homogeneous polynomial). For example, 4x^2 + 2xy - 3y^2 is a quadratic form in the variables and . The coefficients usually belong to a fixed field , such as the real or complex numbers, and one speaks of a quadratic form ''over'' . Over the reals, a quadratic form is said to be '' definite'' if it takes the value zero only when all its variables are simultaneously zero; otherwise it is '' isotropic''. Quadratic forms occupy a central place in various branches of mathematics, including number theory, linear algebra, group theory ( orthogonal groups), differential geometry (the Riemannian metric, the second fundamental form), differential topology ( intersection forms of manifolds, especially four-manifolds), Lie theory (the Killing form), and statistics (where the exponent of a zero-mean multivariate normal distribution has the quadratic form -\mathbf^\math ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Annals Of Mathematics
The ''Annals of Mathematics'' is a mathematical journal published every two months by Princeton University and the Institute for Advanced Study. History The journal was established as ''The Analyst'' in 1874 and with Joel E. Hendricks as the founding editor-in-chief. It was "intended to afford a medium for the presentation and analysis of any and all questions of interest or importance in pure and applied Mathematics, embracing especially all new and interesting discoveries in theoretical and practical astronomy, mechanical philosophy, and engineering". It was published in Des Moines, Iowa, and was the earliest American mathematics journal to be published continuously for more than a year or two. This incarnation of the journal ceased publication after its tenth year, in 1883, giving as an explanation Hendricks' declining health, but Hendricks made arrangements to have it taken over by new management, and it was continued from March 1884 as the ''Annals of Mathematics''. T ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Springer-Verlag
Springer Science+Business Media, commonly known as Springer, is a German multinational publishing company of books, e-books and peer-reviewed journals in science, humanities, technical and medical (STM) publishing. Originally founded in 1842 in Berlin, it expanded internationally in the 1960s, and through mergers in the 1990s and a sale to venture capitalists it fused with Wolters Kluwer and eventually became part of Springer Nature in 2015. Springer has major offices in Berlin, Heidelberg, Dordrecht, and New York City. History Julius Springer founded Springer-Verlag in Berlin in 1842 and his son Ferdinand Springer grew it from a small firm of 4 employees into Germany's then second-largest academic publisher with 65 staff in 1872.Chronology
". Springer Science+Business Media.
In 1964, Springer expanded its business internationally, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Local Rigidity
Local rigidity theorems in the theory of discrete subgroups of Lie groups are results which show that small deformations of certain such subgroups are always trivial. It is different from Mostow rigidity and weaker (but holds more frequently) than superrigidity. History The first such theorem was proven by Atle Selberg for co-compact discrete subgroups of the unimodular groups \mathrm_n(\mathbb R). Shortly afterwards a similar statement was proven by Eugenio Calabi in the setting of fundamental groups of compact hyperbolic manifolds. Finally, the theorem was extended to all co-compact subgroups of semisimple Lie groups by André Weil. The extension to non-cocompact lattices was made later by Howard Garland and Madabusi Santanam Raghunathan. The result is now sometimes referred to as Calabi—Weil (or just Weil) rigidity. Statement Deformations of subgroups Let \Gamma be a group generated by a finite number of elements g_1, \ldots, g_n and G a Lie group. Then the map \m ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Superrigidity
In mathematics, in the theory of discrete groups, superrigidity is a concept designed to show how a linear representation ρ of a discrete group Γ inside an algebraic group ''G'' can, under some circumstances, be as good as a representation of ''G'' itself. That this phenomenon happens for certain broadly defined classes of lattices inside semisimple groups was the discovery of Grigory Margulis, who proved some fundamental results in this direction. There is more than one result that goes by the name of ''Margulis superrigidity''. One simplified statement is this: take ''G'' to be a simply connected semisimple real algebraic group in ''GL''''n'', such that the Lie group of its real points has real rank at least 2 and no compact factors. Suppose Γ is an irreducible lattice in G. For a local field ''F'' and ρ a linear representation of the lattice Γ of the Lie group, into ''GL''''n'' (''F''), assume the image ρ(Γ) is not relatively compact (in the topology arising from ''F'') a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Commensurability (group Theory)
In mathematics, specifically in group theory, two groups are commensurable if they differ only by a finite amount, in a precise sense. The commensurator of a subgroup is another subgroup, related to the normalizer. Abstract commensurability Two group (mathematics), groups ''G''1 and ''G''2 are said to be (abstractly) commensurable if there are subgroups ''H''1 ⊂ ''G''1 and ''H''2 ⊂ ''G''2 of finite set, finite index (group theory), index such that ''H''1 is group isomorphism, isomorphic to ''H''2. For example: *A group is finite if and only if it is commensurable with the trivial group. *Any two finitely generated free groups on at least 2 generators are commensurable with each other. The group modular group, ''SL''(2,Z) is also commensurable with these free groups. *Any two surface groups of genus (mathematics), genus at least 2 are commensurable with each other. In geometric group theory, a finitely generated group is viewed as a metric space using the word metric. If two gr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Quasi-isometry
In mathematics, a quasi-isometry is a function between two metric spaces that respects large-scale geometry of these spaces and ignores their small-scale details. Two metric spaces are quasi-isometric if there exists a quasi-isometry between them. The property of being quasi-isometric behaves like an equivalence relation on the class of metric spaces. The concept of quasi-isometry is especially important in geometric group theory, following the work of Gromov. Definition Suppose that f is a (not necessarily continuous) function from one metric space (M_1,d_1) to a second metric space (M_2,d_2). Then f is called a ''quasi-isometry'' from (M_1,d_1) to (M_2,d_2) if there exist constants A\ge 1, B\ge 0, and C\ge 0 such that the following two properties both hold:P. de la Harpe, ''Topics in geometric group theory''. Chicago Lectures in Mathematics. University of Chicago Press, Chicago, IL, 2000. #For every two points x and y in M_1, the distance between their images is up to the a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hyperbolic Group
In group theory, more precisely in geometric group theory, a hyperbolic group, also known as a ''word hyperbolic group'' or ''Gromov hyperbolic group'', is a finitely generated group equipped with a word metric satisfying certain properties abstracted from classical hyperbolic geometry. The notion of a hyperbolic group was introduced and developed by . The inspiration came from various existing mathematical theories: hyperbolic geometry but also low-dimensional topology (in particular the results of Max Dehn concerning the fundamental group of a hyperbolic Riemann surface, and more complex phenomena in three-dimensional topology), and combinatorial group theory. In a very influential (over 1000 citations ) chapter from 1987, Gromov proposed a wide-ranging research program. Ideas and foundational material in the theory of hyperbolic groups also stem from the work of George Mostow, William Thurston, James W. Cannon, Eliyahu Rips, and many others. Definition Let G be a fin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Geometric Group Theory
Geometric group theory is an area in mathematics devoted to the study of finitely generated groups via exploring the connections between algebraic properties of such groups and topological and geometric properties of spaces on which these groups can act non-trivially (that is, when the groups in question are realized as geometric symmetries or continuous transformations of some spaces). Another important idea in geometric group theory is to consider finitely generated groups themselves as geometric objects. This is usually done by studying the Cayley graphs of groups, which, in addition to the graph structure, are endowed with the structure of a metric space, given by the so-called word metric. Geometric group theory, as a distinct area, is relatively new, and became a clearly identifiable branch of mathematics in the late 1980s and early 1990s. Geometric group theory closely interacts with low-dimensional topology, hyperbolic geometry, algebraic topology, computational group ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Planar Graph
In graph theory, a planar graph is a graph (discrete mathematics), graph that can be graph embedding, embedded in the plane (geometry), plane, i.e., it can be drawn on the plane in such a way that its edges intersect only at their endpoints. In other words, it can be drawn in such a way that no edges cross each other. Such a drawing is called a plane graph, or a planar embedding of the graph. A plane graph can be defined as a planar graph with a mapping from every node to a point on a plane, and from every edge to a plane curve on that plane, such that the extreme points of each curve are the points mapped from its end nodes, and all curves are disjoint except on their extreme points. Every graph that can be drawn on a plane can be drawn on the sphere as well, and vice versa, by means of stereographic projection. Plane graphs can be encoded by combinatorial maps or rotation systems. An equivalence class of topologically equivalent drawings on the sphere, usually with addit ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Circle Packing Theorem
The circle packing theorem (also known as the Koebe–Andreev–Thurston theorem) describes the possible tangency relations between circles in the plane whose interiors are disjoint. A circle packing is a connected collection of circles (in general, on any Riemann surface) whose interiors are disjoint. The intersection graph of a circle packing is the graph having a vertex (graph theory), vertex for each circle, and an edge (graph theory), edge for every pair of circles that are tangent circles, tangent. If the circle packing is on the plane, or, equivalently, on the sphere, then its intersection graph is called a coin graph; more generally, intersection graphs of interior-disjoint geometric objects are called tangency graphs or contact graphs. Coin graphs are always connected, simple graph, simple, and planar graph, planar. The circle packing theorem states that these are the only requirements for a graph to be a coin graph: Circle packing theorem: For every finite connected ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]