Mori Domain
In algebra, a Mori domain, named after Yoshiro Mori by , is an integral domain satisfying the ascending chain condition on integral divisorial ideals. Noetherian domains and Krull domain In commutative algebra, a Krull ring, or Krull domain, is a commutative ring with a well behaved theory of prime factorization. They were introduced by Wolfgang Krull in 1931. They are a higher-dimensional generalization of Dedekind domains, which a ...s both have this property. A commutative ring is a Krull domain if and only if it is a Mori domain and completely integrally closed.Bourbaki AC ch. VII §1 no. 3 th. 2 A polynomial ring over a Mori domain need not be a Mori domain. Also, the complete integral closure of a Mori domain need not be a Mori (or, equivalently, Krull) domain. Notes References * * * * * * * Commutative algebra {{commutative-algebra-stub ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Yoshiro Mori (mathematician)
Yoshiro Mori is a Japanese mathematician working on commutative algebra who introduced the Mori–Nagata theorem and whose work led to Mori domain In algebra, a Mori domain, named after Yoshiro Mori by , is an integral domain satisfying the ascending chain condition on integral divisorial ideals. Noetherian domains and Krull domain In commutative algebra, a Krull ring, or Krull domain, is ...s. References * 20th-century Japanese mathematicians Year of birth missing Possibly living people Place of birth missing {{Japan-mathematician-stub ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Integral Domain
In mathematics, an integral domain is a nonzero commutative ring in which the product of any two nonzero elements is nonzero. Integral domains are generalizations of the ring of integers and provide a natural setting for studying divisibility. In an integral domain, every nonzero element ''a'' has the cancellation property, that is, if , an equality implies . "Integral domain" is defined almost universally as above, but there is some variation. This article follows the convention that rings have a multiplicative identity, generally denoted 1, but some authors do not follow this, by not requiring integral domains to have a multiplicative identity. Noncommutative integral domains are sometimes admitted. This article, however, follows the much more usual convention of reserving the term "integral domain" for the commutative case and using " domain" for the general case including noncommutative rings. Some sources, notably Lang, use the term entire ring for integral domain ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Ascending Chain Condition
In mathematics, the ascending chain condition (ACC) and descending chain condition (DCC) are finiteness properties satisfied by some algebraic structures, most importantly Ideal (ring theory), ideals in certain commutative rings. These conditions played an important role in the development of the structure theory of commutative rings in the works of David Hilbert, Emmy Noether, and Emil Artin. The conditions themselves can be stated in an abstract form, so that they make sense for any partially ordered set. This point of view is useful in abstract algebraic dimension theory due to Gabriel and Rentschler. Definition A partially ordered set (poset) ''P'' is said to satisfy the ascending chain condition (ACC) if no infinite strictly ascending sequence : a_1 < a_2 < a_3 < \cdots of elements of ''P'' exists. Equivalently, every weakly ascending sequence : of elements of ''P'' eventually stabilizes, meaning that there exists a pos ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Noetherian Domain
In mathematics, a Noetherian ring is a ring that satisfies the ascending chain condition on left and right ideals. If the chain condition is satisfied only for left ideals or for right ideals, then the ring is said left-Noetherian or right-Noetherian respectively. Formally, every increasing sequence I_1\subseteq I_2 \subseteq I_3 \subseteq \cdots of left (or right) ideals has a largest element; that is, there exists an n such that I_=I_=\cdots. Equivalently, a ring is left-Noetherian (respectively right-Noetherian) if every left ideal (respectively right-ideal) is finitely generated. A ring is Noetherian if it is both left- and right-Noetherian. Noetherian rings are fundamental in both commutative and noncommutative ring theory since many rings that are encountered in mathematics are Noetherian (in particular the ring of integers, polynomial rings, and rings of algebraic integers in number fields), and many general theorems on rings rely heavily on the Noetherian property (for e ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Krull Domain
In commutative algebra, a Krull ring, or Krull domain, is a commutative ring with a well behaved theory of prime factorization. They were introduced by Wolfgang Krull in 1931. They are a higher-dimensional generalization of Dedekind domains, which are exactly the Krull domains of dimension at most 1. In this article, a ring is commutative and has unity. Formal definition Let A be an integral domain and let P be the set of all prime ideals of A of height one, that is, the set of all prime ideals properly containing no nonzero prime ideal. Then A is a Krull ring if # A_ is a discrete valuation ring for all \mathfrak \in P , # A is the intersection of these discrete valuation rings (considered as subrings of the quotient field of A ), #any nonzero element of A is contained in only a finite number of height 1 prime ideals. It is also possible to characterize Krull rings by mean of valuations only: An integral domain A is a Krull ring if there exists a family \ _ ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Completely Integrally Closed
In commutative algebra, an integrally closed domain ''A'' is an integral domain whose integral closure in its field of fractions is ''A'' itself. Spelled out, this means that if ''x'' is an element of the field of fractions of ''A'' that is a root of a monic polynomial with coefficients in ''A,'' then ''x'' is itself an element of ''A.'' Many well-studied domains are integrally closed, as shown by the following chain of class inclusions: An explicit example is the ring of integers Z, a Euclidean domain. All regular local rings are integrally closed as well. A ring whose localizations at all prime ideals are integrally closed domains is a normal ring. Basic properties Let ''A'' be an integrally closed domain with field of fractions ''K'' and let ''L'' be a field extension of ''K''. Then ''x''∈''L'' is integral over ''A'' if and only if it is algebraic over ''K'' and its minimal polynomial over ''K'' has coefficients in ''A''. In particular, this means that any element ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Complete Integral Closure
In commutative algebra, an element ''b'' of a commutative ring ''B'' is said to be integral over a subring ''A'' of ''B'' if ''b'' is a root of some monic polynomial over ''A''. If ''A'', ''B'' are fields, then the notions of "integral over" and of an "integral extension" are precisely " algebraic over" and "algebraic extensions" in field theory (since the root of any polynomial is the root of a monic polynomial). The case of greatest interest in number theory is that of complex numbers integral over Z (e.g., \sqrt or 1+i); in this context, the integral elements are usually called algebraic integers. The algebraic integers in a finite extension field ''k'' of the rationals Q form a subring of ''k'', called the ring of integers of ''k'', a central object of study in algebraic number theory. In this article, the term ''ring'' will be understood to mean ''commutative ring'' with a multiplicative identity. Definition Let B be a ring and let A \subset B be a subring of B. An elemen ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Canadian Journal Of Mathematics
The ''Canadian Journal of Mathematics'' () is a bimonthly mathematics journal published by the Canadian Mathematical Society. It was established in 1949 by H. S. M. Coxeter and G. de B. Robinson. The current editors-in-chief of the journal are Henry Kim and Robert McCann. The journal publishes articles in all areas of mathematics. See also * Canadian Mathematical Bulletin The ''Canadian Mathematical Bulletin'' () is a mathematics journal, established in 1958 and published quarterly by the Canadian Mathematical Society. The current editors-in-chief of the journal are Antonio Lei and Javad Mashreghi. The journal p ... References External links * Research Journals, Canadian Mathematical Society University of Toronto Press academic journals Mathematics journals Academic journals established in 1949 Bimonthly journals Multilingual journals Cambridge University Press academic journals Academic journals associated with learned and professional societies of Cana ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |