HOME





Ascending Chain Condition
In mathematics, the ascending chain condition (ACC) and descending chain condition (DCC) are finiteness properties satisfied by some algebraic structures, most importantly Ideal (ring theory), ideals in certain commutative rings. These conditions played an important role in the development of the structure theory of commutative rings in the works of David Hilbert, Emmy Noether, and Emil Artin. The conditions themselves can be stated in an abstract form, so that they make sense for any partially ordered set. This point of view is useful in abstract algebraic dimension theory due to Gabriel and Rentschler. Definition A partially ordered set (poset) ''P'' is said to satisfy the ascending chain condition (ACC) if no infinite strictly ascending sequence : a_1 < a_2 < a_3 < \cdots of elements of ''P'' exists. Equivalently, every weakly ascending sequence : a_1 \leq a_2 \leq a_3 \leq \cdots, of elements of ''P'' eventually stabilizes, meaning that there exists a pos ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Noetherian Ring
In mathematics, a Noetherian ring is a ring that satisfies the ascending chain condition on left and right ideals. If the chain condition is satisfied only for left ideals or for right ideals, then the ring is said left-Noetherian or right-Noetherian respectively. Formally, every increasing sequence I_1\subseteq I_2 \subseteq I_3 \subseteq \cdots of left (or right) ideals has a largest element; that is, there exists an n such that I_=I_=\cdots. Equivalently, a ring is left-Noetherian (respectively right-Noetherian) if every left ideal (respectively right-ideal) is finitely generated. A ring is Noetherian if it is both left- and right-Noetherian. Noetherian rings are fundamental in both commutative and noncommutative ring theory since many rings that are encountered in mathematics are Noetherian (in particular the ring of integers, polynomial rings, and rings of algebraic integers in number fields), and many general theorems on rings rely heavily on the Noetherian property ( ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Commutative Algebra
Commutative algebra, first known as ideal theory, is the branch of algebra that studies commutative rings, their ideal (ring theory), ideals, and module (mathematics), modules over such rings. Both algebraic geometry and algebraic number theory build on commutative algebra. Prominent examples of commutative rings include polynomial rings; rings of algebraic integers, including the ordinary integers \mathbb; and p-adic number, ''p''-adic integers. Commutative algebra is the main technical tool of algebraic geometry, and many results and concepts of commutative algebra are strongly related with geometrical concepts. The study of rings that are not necessarily commutative is known as noncommutative algebra; it includes ring theory, representation theory, and the theory of Banach algebras. Overview Commutative algebra is essentially the study of the rings occurring in algebraic number theory and algebraic geometry. Several concepts of commutative algebras have been developed in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Kluwer Academic Publishers
Springer Science+Business Media, commonly known as Springer, is a German multinational publishing company of books, e-books and peer-reviewed journals in science, humanities, technical and medical (STM) publishing. Originally founded in 1842 in Berlin, it expanded internationally in the 1960s, and through mergers in the 1990s and a sale to venture capitalists it fused with Wolters Kluwer and eventually became part of Springer Nature in 2015. Springer has major offices in Berlin, Heidelberg, Dordrecht, and New York City. History Julius Springer founded Springer-Verlag in Berlin in 1842 and his son Ferdinand Springer grew it from a small firm of 4 employees into Germany's then second-largest academic publisher with 65 staff in 1872.Chronology
". Springer Science+Business Media.
In 1964, Springer expanded its business internationally, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Introduction To Commutative Algebra
''Introduction to Commutative Algebra'' is a well-known commutative algebra textbook written by Michael Atiyah and Ian G. Macdonald. It is on the list of 173 books essential for undergraduate math libraries. As of May 2025, Google Scholar lists over 8000 citations to this book. It deals with elementary concepts of commutative algebra including localization, primary decomposition, integral dependence, Noetherian and Artinian rings and modules, Dedekind rings, completions and a moderate amount of dimension theory. It is notable for being among the shorter English-language introductory textbooks in the subject, relegating a good deal of material to the exercise Exercise or workout is physical activity that enhances or maintains fitness and overall health. It is performed for various reasons, including weight loss or maintenance, to aid growth and improve strength, develop muscles and the cardio ...s. (Hardcover 1969, ) (Paperback 1994, ) Reviews Michael Berg ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Noetherian
In mathematics, the adjective Noetherian is used to describe objects that satisfy an ascending or descending chain condition on certain kinds of subobjects, meaning that certain ascending or descending sequences of subobjects must have finite length. Noetherian objects are named after Emmy Noether, who was the first to study the ascending and descending chain conditions for rings. Specifically: * Noetherian group, a group that satisfies the ascending chain condition on subgroups. * Noetherian ring, a ring that satisfies the ascending chain condition on ideals. * Noetherian module, a module that satisfies the ascending chain condition on submodules. * More generally, an object in a category is said to be Noetherian if there is no infinitely increasing filtration of it by subobjects. A category is Noetherian if every object in it is Noetherian. * Noetherian relation, a binary relation that satisfies the ascending chain condition on its elements. * Noetherian topological spac ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Maximal Condition On Congruences
In mathematics, a semigroup is an algebraic structure consisting of a set together with an associative internal binary operation on it. The binary operation of a semigroup is most often denoted multiplicatively (just notation, not necessarily the elementary arithmetic multiplication): , or simply ''xy'', denotes the result of applying the semigroup operation to the ordered pair . Associativity is formally expressed as that for all ''x'', ''y'' and ''z'' in the semigroup. Semigroups may be considered a special case of magmas, where the operation is associative, or as a generalization of groups, without requiring the existence of an identity element or inverses. As in the case of groups or magmas, the semigroup operation need not be commutative, so is not necessarily equal to ; a well-known example of an operation that is associative but non-commutative is matrix multiplication. If the semigroup operation is commutative, then the semigroup is called a ''commutative semigrou ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Krull Dimension
In commutative algebra, the Krull dimension of a commutative ring ''R'', named after Wolfgang Krull, is the supremum of the lengths of all chains of prime ideals. The Krull dimension need not be finite even for a Noetherian ring. More generally the Krull dimension can be defined for modules over possibly non-commutative rings as the deviation of the poset of submodules. The Krull dimension was introduced to provide an algebraic definition of the dimension of an algebraic variety: the dimension of the affine variety defined by an ideal ''I'' in a polynomial ring ''R'' is the Krull dimension of ''R''/''I''. A field ''k'' has Krull dimension 0; more generally, ''k'' 'x''1, ..., ''x''''n''has Krull dimension ''n''. A principal ideal domain that is not a field has Krull dimension 1. A local ring has Krull dimension 0 if and only if every element of its maximal ideal is nilpotent. There are several other ways that have been used to define the dimension of a ring. Most of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Ascending Chain Condition For Principal Ideals
In abstract algebra, the ascending chain condition can be applied to the posets of principal left, principal right, or principal two-sided ideals of a ring, partially ordered by inclusion. The ascending chain condition on principal ideals (abbreviated to ACCP) is satisfied if there is no infinite strictly ascending chain of principal ideals of the given type (left/right/two-sided) in the ring, or said another way, every ascending chain is eventually constant. The counterpart descending chain condition may also be applied to these posets, however there is currently no need for the terminology "DCCP" since such rings are already called left or right perfect rings. (See '' below.'') Noetherian rings (e.g. principal ideal domains) are typical examples, but some important non-Noetherian rings also satisfy (ACCP), notably unique factorization domain In mathematics, a unique factorization domain (UFD) (also sometimes called a factorial ring following the terminology of Bourbak ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Artinian (other)
Artinian may refer to: Mathematics *Objects named for Austrian mathematician Emil Artin (1898–1962) ** Artinian ideal, an ideal ''I'' in ''R'' for which the Krull dimension of the quotient ring ''R/I'' is 0 ** Artinian ring, a ring which satisfies the descending chain condition on (one-sided) ideals ** Artinian module, a module which satisfies the descending chain condition on submodules ** Artinian group, a group which satisfies the descending chain condition on subgroups People * Araz Artinian, Armenian-Canadian filmmaker and photographer * Artine Artinian (1907–2005), French literature scholar See also * Descending chain condition * List of things named after Emil Artin {{Disambiguation, math, surname ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Well-order
In mathematics, a well-order (or well-ordering or well-order relation) on a set is a total ordering on with the property that every non-empty subset of has a least element in this ordering. The set together with the ordering is then called a well-ordered set (or woset). In some academic articles and textbooks these terms are instead written as wellorder, wellordered, and wellordering or well order, well ordered, and well ordering. Every non-empty well-ordered set has a least element. Every element of a well-ordered set, except a possible greatest element, has a unique successor (next element), namely the least element of the subset of all elements greater than . There may be elements, besides the least element, that have no predecessor (see below for an example). A well-ordered set contains for every subset with an upper bound a least upper bound, namely the least element of the subset of all upper bounds of in . If ≤ is a non-strict well ordering, then < is a st ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Algebraic Structure
In mathematics, an algebraic structure or algebraic system consists of a nonempty set ''A'' (called the underlying set, carrier set or domain), a collection of operations on ''A'' (typically binary operations such as addition and multiplication), and a finite set of identities (known as ''axioms'') that these operations must satisfy. An algebraic structure may be based on other algebraic structures with operations and axioms involving several structures. For instance, a vector space involves a second structure called a field, and an operation called ''scalar multiplication'' between elements of the field (called '' scalars''), and elements of the vector space (called '' vectors''). Abstract algebra is the name that is commonly given to the study of algebraic structures. The general theory of algebraic structures has been formalized in universal algebra. Category theory is another formalization that includes also other mathematical structures and functions between structu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]