Mohammad H. Ansari
Mohammad Ansari is a theoretical physicist expert in quantum physics. In 2006, he proposed that quantum gravitational effects can be seen on top of Hawking radiation of black hole. He was the first winner of John H. Brodie, John Brodie prize from the Perimeter Institute for Theoretical Physics. In 2015, Ansari and Nazarov proposed a quantum version of the fluctuation-dissipation theorem in quantum heat engines that is an exact correspondence between Rényi entropy and Full Counting Statistics (FCS) of energy transfers. Ansari has recently reported a novel symmetry in quantum computation that helps to liberate quantum bits from a fundamental parasitic interactions. In 2020, experimenters from IBM Watson Research Center have verified the symmetry and eliminated the redundant interactions between qubits. See also * List of University of Waterloo people References External links * Mohammad H Ansari on ResearchGate* Official weblog {{DEFAULTSORT:Ansari, Mohammad H Living peopl ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Physics
Physics is the natural science that studies matter, its fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. "Physical science is that department of knowledge which relates to the order of nature, or, in other words, to the regular succession of events." Physics is one of the most fundamental scientific disciplines, with its main goal being to understand how the universe behaves. "Physics is one of the most fundamental of the sciences. Scientists of all disciplines use the ideas of physics, including chemists who study the structure of molecules, paleontologists who try to reconstruct how dinosaurs walked, and climatologists who study how human activities affect the atmosphere and oceans. Physics is also the foundation of all engineering and technology. No engineer could design a flat-screen TV, an interplanetary spacecraft, or even a better mousetrap without first understanding the basic laws of physics ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
John H
John is a common English name and surname: * John (given name) * John (surname) John may also refer to: New Testament Works * Gospel of John, a title often shortened to John * First Epistle of John, often shortened to 1 John * Second Epistle of John, often shortened to 2 John * Third Epistle of John, often shortened to 3 John People * John the Baptist (died c. AD 30), regarded as a prophet and the forerunner of Jesus Christ * John the Apostle (lived c. AD 30), one of the twelve apostles of Jesus * John the Evangelist, assigned author of the Fourth Gospel, once identified with the Apostle * John of Patmos, also known as John the Divine or John the Revelator, the author of the Book of Revelation, once identified with the Apostle * John the Presbyter, a figure either identified with or distinguished from the Apostle, the Evangelist and John of Patmos Other people with the given name Religious figures * John, father of Andrew the Apostle and Saint Peter * P ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Living People
Related categories * :Year of birth missing (living people) / :Year of birth unknown * :Date of birth missing (living people) / :Date of birth unknown * :Place of birth missing (living people) / :Place of birth unknown * :Year of death missing / :Year of death unknown * :Date of death missing / :Date of death unknown * :Place of death missing / :Place of death unknown * :Missing middle or first names See also * :Dead people * :Template:L, which generates this category or death years, and birth year and sort keys. : {{DEFAULTSORT:Living people 21st-century people People by status ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
List Of University Of Waterloo People
The University of Waterloo, located in Waterloo, Ontario, Canada, is a comprehensive public university that was founded in 1957 by Drs. Gerry Hagey and Ira G. Needles. It has grown into an institution of more than 42,000 students, faculty, and staff. The school is notable for being the first accredited university in North America to create a Faculty of Mathematics, which is now the world's largest, and to have the largest cooperative education program in the world. The school is also known for having more companies formed by its faculty, students, and alumni than any other Canadian university, and as such, the university has been called the "Silicon Valley of the North". The list is drawn from notable faculty, alumni, staff, and former university presidents. The enrollment for 2020 was 36,057 undergraduate and 6,231 graduate students, with 1,350 faculty members and 2,596 staff. About 221,000 people have graduated from the university, and now reside in over 150 countries. Alumni ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Full Counting Statistics
Full may refer to: * People with the surname Full, including: ** Mr. Full (given name unknown), acting Governor of German Cameroon, 1913 to 1914 * A property in the mathematical field of topology; see Full set * A property of functors in the mathematical field of category theory; see Full and faithful functors * Satiety, the absence of hunger * A standard bed size, see Bed * Fulling, also known as tucking or walking ("waulking" in Scotland), term for a step in woollen clothmaking (verb: ''to full'') * Full-Reuenthal, a municipality in the district of Zurzach in the canton of Aargau in Switzerland See also *"Fullest", a song by the rapper Cupcakke Elizabeth Eden Harris (born May 31, 1997), known professionally as Cupcakke (often stylized as CupcakKe; pronounced ), is an American rapper from Chicago, Illinois. She is known for her hypersexualised, brazen, and often comical persona and mus ... * Ful (other) {{disambiguation ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Rényi Entropy
In information theory, the Rényi entropy is a quantity that generalizes various notions of entropy, including Hartley entropy, Shannon entropy, collision entropy, and min-entropy. The Rényi entropy is named after Alfréd Rényi, who looked for the most general way to quantify information while preserving additivity for independent events. In the context of fractal dimension estimation, the Rényi entropy forms the basis of the concept of generalized dimensions. The Rényi entropy is important in ecology and statistics as index of diversity. The Rényi entropy is also important in quantum information, where it can be used as a measure of entanglement. In the Heisenberg XY spin chain model, the Rényi entropy as a function of can be calculated explicitly because it is an automorphic function with respect to a particular subgroup of the modular group. In theoretical computer science, the min-entropy is used in the context of randomness extractors. Definition The Rényi ent ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Quantum Heat Engines
A quantum heat engine is a device that generates power from the heat flow between hot and cold reservoirs. The operation mechanism of the engine can be described by the laws of quantum mechanics. The first realization of a quantum heat engine was pointed out by Scovil and Schulz-DuBois in 1959, showing the connection of efficiency of the Carnot engine and the 3-level maser. Quantum refrigerators share the structure of quantum heat engines with the purpose of pumping heat from a cold to a hot bath consuming power first suggested by Geusic, Schulz-DuBois, De Grasse and Scovil. When the power is supplied by a laser the process is termed optical pumping or laser cooling, suggested by Wineland and Hänsch.D. J. Wineland and H. Dehmelt, Bull. Am. Phys. Soc. 20, 637 (1975) Surprisingly heat engines and refrigerators can operate up to the scale of a single particle thus justifying the need for a quantum theory termed quantum thermodynamics. The 3-level amplifier as a quantum heat e ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Fluctuation-dissipation Theorem
The fluctuation–dissipation theorem (FDT) or fluctuation–dissipation relation (FDR) is a powerful tool in statistical physics for predicting the behavior of systems that obey detailed balance. Given that a system obeys detailed balance, the theorem is a proof that thermodynamic fluctuations in a physical variable predict the response quantified by the admittance or impedance (to be intended in their general sense, not only in electromagnetic terms) of the same physical variable (like voltage, temperature difference, etc.), and vice versa. The fluctuation–dissipation theorem applies both to classical and quantum mechanical systems. The fluctuation–dissipation theorem was proven by Herbert Callen and Theodore Welton in 1951 and expanded by Ryogo Kubo. There are antecedents to the general theorem, including Einstein's explanation of Brownian motion during his ''annus mirabilis'' and Harry Nyquist's explanation in 1928 of Johnson noise in electrical resistors. Qualitat ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Black Hole
A black hole is a region of spacetime where gravity is so strong that nothing, including light or other electromagnetic waves, has enough energy to escape it. The theory of general relativity predicts that a sufficiently compact mass can deform spacetime to form a black hole. The boundary of no escape is called the event horizon. Although it has a great effect on the fate and circumstances of an object crossing it, it has no locally detectable features according to general relativity. In many ways, a black hole acts like an ideal black body, as it reflects no light. Moreover, quantum field theory in curved spacetime predicts that event horizons emit Hawking radiation, with the same spectrum as a black body of a temperature inversely proportional to its mass. This temperature is of the order of billionths of a kelvin for stellar black holes, making it essentially impossible to observe directly. Objects whose gravitational fields are too strong for light to escape were fi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Theoretical Physics
Theoretical physics is a branch of physics that employs mathematical models and abstractions of physical objects and systems to rationalize, explain and predict natural phenomena. This is in contrast to experimental physics, which uses experimental tools to probe these phenomena. The advancement of science generally depends on the interplay between experimental studies and theory. In some cases, theoretical physics adheres to standards of mathematical rigour while giving little weight to experiments and observations.There is some debate as to whether or not theoretical physics uses mathematics to build intuition and illustrativeness to extract physical insight (especially when normal experience fails), rather than as a tool in formalizing theories. This links to the question of it using mathematics in a less formally rigorous, and more intuitive or heuristic way than, say, mathematical physics. For example, while developing special relativity, Albert Einstein was concer ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Hawking Radiation
Hawking radiation is theoretical black body radiation that is theorized to be released outside a black hole's event horizon because of relativistic quantum effects. It is named after the physicist Stephen Hawking, who developed a theoretical argument for its existence in 1974. Hawking radiation is a purely kinematic effect that is generic to Lorentzian geometries containing event horizons or local apparent horizons. Hawking radiation reduces the mass and rotational energy of black holes and is therefore also theorized to cause black hole evaporation. Because of this, black holes that do not gain mass through other means are expected to shrink and ultimately vanish. For all except the smallest black holes, this would happen extremely slowly. The radiation temperature is inversely proportional to the black hole's mass, so micro black holes are predicted to be larger emitters of radiation than larger black holes and should dissipate faster. Overview Black holes are astrophys ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Quantum Physics
Quantum mechanics is a fundamental theory in physics that provides a description of the physical properties of nature at the scale of atoms and subatomic particles. It is the foundation of all quantum physics including quantum chemistry, quantum field theory, quantum technology, and quantum information science. Classical physics, the collection of theories that existed before the advent of quantum mechanics, describes many aspects of nature at an ordinary ( macroscopic) scale, but is not sufficient for describing them at small (atomic and subatomic) scales. Most theories in classical physics can be derived from quantum mechanics as an approximation valid at large (macroscopic) scale. Quantum mechanics differs from classical physics in that energy, momentum, angular momentum, and other quantities of a bound system are restricted to discrete values ( quantization); objects have characteristics of both particles and waves (wave–particle duality); and there are limit ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |