Minsky Machine
In mathematical logic and theoretical computer science, a register machine is a generic class of abstract machines, analogous to a Turing machine and thus Turing complete. Unlike a Turing machine that uses a tape and head, a register machine utilizes multiple uniquely addressed registers to store non-negative integers. There are several sub-classes of register machines, including counter machines, pointer machines, random-access machines (RAM), and Random-Access Stored-Program Machine (RASP), each varying in complexity. These machines, particularly in theoretical studies, help in understanding computational processes. The concept of register machines can also be applied to virtual machines in practical computer science, for educational purposes and reducing dependency on specific hardware architectures. Overview The register machine gets its name from its use of one or more " registers". In contrast to the tape and head used by a Turing machine, the model uses multiple unique ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mathematical Logic
Mathematical logic is the study of Logic#Formal logic, formal logic within mathematics. Major subareas include model theory, proof theory, set theory, and recursion theory (also known as computability theory). Research in mathematical logic commonly addresses the mathematical properties of formal systems of logic such as their expressive or deductive power. However, it can also include uses of logic to characterize correct mathematical reasoning or to establish foundations of mathematics. Since its inception, mathematical logic has both contributed to and been motivated by the study of foundations of mathematics. This study began in the late 19th century with the development of axiomatic frameworks for geometry, arithmetic, and Mathematical analysis, analysis. In the early 20th century it was shaped by David Hilbert's Hilbert's program, program to prove the consistency of foundational theories. Results of Kurt Gödel, Gerhard Gentzen, and others provided partial resolution to th ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Universal Turing Machine
In computer science, a universal Turing machine (UTM) is a Turing machine capable of computing any computable sequence, as described by Alan Turing in his seminal paper "On Computable Numbers, with an Application to the Entscheidungsproblem". Common sense might say that a universal machine is impossible, but Turing proves that it is possible. He suggested that we may compare a human in the process of computing a real number to a machine which is only capable of a finite number of conditions ; which will be called "-configurations". He then described the operation of such machine, as described below, and argued: Turing introduced the idea of such a machine in 1936–1937. Introduction Martin Davis makes a persuasive argument that Turing's conception of what is now known as "the stored-program computer", of placing the "action table"—the instructions for the machine—in the same "memory" as the input data, strongly influenced John von Neumann's conception of the first Amer ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Diophantine Equation
''Diophantine'' means pertaining to the ancient Greek mathematician Diophantus. A number of concepts bear this name: *Diophantine approximation In number theory, the study of Diophantine approximation deals with the approximation of real numbers by rational numbers. It is named after Diophantus of Alexandria. The first problem was to know how well a real number can be approximated ... * Diophantine equation * Diophantine quintuple * Diophantine set {{disambig ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Hilbert's Problems
Hilbert's problems are 23 problems in mathematics published by German mathematician David Hilbert in 1900. They were all unsolved at the time, and several proved to be very influential for 20th-century mathematics. Hilbert presented ten of the problems (1, 2, 6, 7, 8, 13, 16, 19, 21, and 22) at the Paris conference of the International Congress of Mathematicians, speaking on August 8 at the Sorbonne. The complete list of 23 problems was published later, in English translation in 1902 by Mary Frances Winston Newson in the ''Bulletin of the American Mathematical Society''. Earlier publications (in the original German) appeared in ''Archiv der Mathematik und Physik''. and Of the cleanly formulated Hilbert problems, numbers 3, 7, 10, 14, 17, 18, 19, 21, and 20 have resolutions that are accepted by consensus of the mathematical community. Problems 1, 2, 5, 6, 9, 11, 12, 15, and 22 have solutions that have partial acceptance, but there exists some controversy as to whether ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Emil Post
Emil Leon Post (; February 11, 1897 – April 21, 1954) was an American mathematician and logician. He is best known for his work in the field that eventually became known as computability theory. Life Post was born in Augustów, Suwałki Governorate, Congress Poland, Russian Empire (now Poland) into a Polish Jews, Polish-Jewish family that immigrated to New York City in May 1904. His parents were Arnold and Pearl Post. Post had been interested in astronomy, but at the age of twelve lost his left arm in a car accident. This loss was a significant obstacle to being a professional astronomer, leading to his decision to pursue mathematics rather than astronomy. Post attended the Townsend Harris High School and continued on to graduate from City College of New York in 1917 with a B.S. in mathematics. After completing his Doctor of philosophy, Ph.D. in mathematics in 1920 at Columbia University, supervised by Cassius Jackson Keyser, he did a post-doctorate at Princeton University in ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
McCarthy Formalism
In computer science and recursion theory the McCarthy Formalism (1963) of computer scientist John McCarthy clarifies the notion of recursive functions by use of the IF-THEN-ELSE construction common to computer science, together with four of the operators of primitive recursive functions: zero, successor, equality of numbers and composition. The conditional operator replaces both primitive recursion and the mu-operator. Introduction McCarthy's notion of ''conditional expression'' McCarthy (1960) described his formalism this way: :"In this article, we first describe a formalism for defining functions recursively. We believe this formalism has advantages both as a programming language and as a vehicle for developing a theory of computation.... :We shall need a number of mathematical ideas and notations concerning functions in general. Most of the ideas are well known, but the notion of ''conditional expression'' is believed to be new, and the use of ''conditional expressions'' ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Computer Program
A computer program is a sequence or set of instructions in a programming language for a computer to Execution (computing), execute. It is one component of software, which also includes software documentation, documentation and other intangible components. A ''computer program'' in its human-readable form is called source code. Source code needs another computer program to Execution (computing), execute because computers can only execute their native machine instructions. Therefore, source code may be Translator (computing), translated to machine instructions using a compiler written for the language. (Assembly language programs are translated using an Assembler (computing), assembler.) The resulting file is called an executable. Alternatively, source code may execute within an interpreter (computing), interpreter written for the language. If the executable is requested for execution, then the operating system Loader (computing), loads it into Random-access memory, memory and ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Program Counter
The program counter (PC), commonly called the instruction pointer (IP) in Intel x86 and Itanium microprocessors, and sometimes called the instruction address register (IAR), the instruction counter, or just part of the instruction sequencer, is a processor register that indicates where a computer is in its program sequence. Usually, the PC is incremented after fetching an instruction, and holds the memory address of (" points to") the next instruction that would be executed. Processors usually fetch instructions sequentially from memory, but ''control transfer'' instructions change the sequence by placing a new value in the PC. These include branches (sometimes called jumps), subroutine calls, and returns. A transfer that is conditional on the truth of some assertion lets the computer follow a different sequence under different conditions. A branch provides that the next instruction is fetched from elsewhere in memory. A subroutine call not only branches but saves the ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Instruction Register
In computing, the instruction register (IR) or current instruction register (CIR) is the part of a CPU's control unit that holds the instruction currently being executed or decoded. In simple processors, each instruction to be executed is loaded into the instruction register, which holds it while it is decoded, prepared and ultimately executed, which can take several steps. Some of the complicated processors use a pipeline of instruction registers where each stage of the pipeline does part of the decoding, preparation or execution and then passes it to the next stage for its step. Modern processors can even do some of the steps out of order as decoding on several instructions is done in parallel. Decoding the op-code in the instruction register includes determining the instruction, determining where its operands are in memory, retrieving the operands from memory, allocating processor resources to execute the command (in super scalar processors), etc. The output of the IR is ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Boolean Function
In mathematics, a Boolean function is a function whose arguments and result assume values from a two-element set (usually , or ). Alternative names are switching function, used especially in older computer science literature, and truth function (or logical function), used in logic. Boolean functions are the subject of Boolean algebra and switching theory. A Boolean function takes the form f:\^k \to \, where \ is known as the Boolean domain and k is a non-negative integer called the arity of the function. In the case where k=0, the function is a constant element of \. A Boolean function with multiple outputs, f:\^k \to \^m with m>1 is a vectorial or ''vector-valued'' Boolean function (an S-box in symmetric cryptography). There are 2^ different Boolean functions with k arguments; equal to the number of different truth tables with 2^k entries. Every k-ary Boolean function can be expressed as a propositional formula in k variables x_1,...,x_k, and two propositional formulas a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Partial Recursive Function
In mathematical logic and computer science, a general recursive function, partial recursive function, or μ-recursive function is a partial function from natural numbers to natural numbers that is "computable" in an intuitive sense – as well as in a formal one. If the function is total, it is also called a total recursive function (sometimes shortened to recursive function). In computability theory, it is shown that the μ-recursive functions are precisely the functions that can be computed by Turing machines (this is one of the theorems that supports the Church–Turing thesis). The μ-recursive functions are closely related to primitive recursive functions, and their inductive definition (below) builds upon that of the primitive recursive functions. However, not every total recursive function is a primitive recursive function—the most famous example is the Ackermann function. Other equivalent classes of functions are the functions of lambda calculus and the functions tha ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Counter Machine
A counter machine or counter automaton is an abstract machine used in a formal logic and theoretical computer science to model computation. It is the most primitive of the four types of register machines. A counter machine comprises a set of one or more unbounded ''registers'', each of which can hold a single non-negative integer, and a list of (usually sequential) arithmetic and control instructions for the machine to follow. The counter machine is typically used in the process of designing parallel algorithms in relation to the mutual exclusion principle. When used in this manner, the counter machine is used to model the discrete time-steps of a computational system in relation to memory accesses. By modeling computations in relation to the memory accesses for each respective computational step, parallel algorithms may be designed in such a matter to avoid interlocking, the simultaneous writing operation by two (or more) threads to the same memory address. Counter machines wi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |