Minifloat
In computing, minifloats are floating-point values represented with very few bits. This reduced precision makes them ill-suited for general-purpose numerical calculations, but they are useful for special purposes such as: * Computer graphics, where human perception of color and light levels has low precision. The 16-bit half-precision format is very popular. * Machine learning, which can be relatively insensitive to numeric precision. 16-bit, 8-bit, and even 4-bit floats are increasingly being used.https://developer.nvidia.com/blog/nvidia-arm-and-intel-publish-fp8-specification-for-standardization-as-an-interchange-format-for-ai/ (joint announcement by Intel, NVIDIA, Arm); https://arxiv.org/abs/2209.05433 (preprint paper jointly written by researchers from aforementioned 3 companies) Additionally, they are frequently encountered as a pedagogical tool in computer-science courses to demonstrate the properties and structures of floating-point arithmetic and IEEE 754 numbers. Depe ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Half-precision
In computing, half precision (sometimes called FP16 or float16) is a binary floating-point computer number format that occupies 16 bits (two bytes in modern computers) in computer memory. It is intended for storage of floating-point values in applications where higher precision is not essential, in particular image processing and neural networks. Almost all modern uses follow the IEEE 754-2008 standard, where the 16-bit base-2 format is referred to as binary16, and the exponent uses 5 bits. This can express values in the range ±65,504, with the minimum value above 1 being 1 + 1/1024. Depending on the computer, half-precision can be over an order of magnitude faster than double precision, e.g. 550 PFLOPS for half-precision vs 37 PFLOPS for double precision on one cloud provider. History Several earlier 16-bit floating point formats have existed including that of Hitachi's HD61810 DSP of 1982 (a 4-bit exponent and a 12-bit mantissa), Thomas J. Scott's WIF of 1991 (5 exp ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Half-precision Floating-point Format
In computing, half precision (sometimes called FP16 or float16) is a binary floating-point computer number format that occupies 16 bits (two bytes in modern computers) in computer memory. It is intended for storage of floating-point values in applications where higher precision is not essential, in particular image processing and neural networks. Almost all modern uses follow the IEEE 754-2008 standard, where the 16-bit base-2 format is referred to as binary16, and the exponent uses 5 bits. This can express values in the range ±65,504, with the minimum value above 1 being 1 + 1/1024. Depending on the computer, half-precision can be over an order of magnitude faster than double precision, e.g. 550 PFLOPS for half-precision vs 37 PFLOPS for double precision on one cloud provider. History Several earlier 16-bit floating point formats have existed including that of Hitachi's HD61810 DSP of 1982 (a 4-bit exponent and a 12-bit mantissa), Thomas J. Scott's WIF of 1991 (5 ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Bfloat16 Floating-point Format
The bfloat16 (brain floating point) floating-point format is a computer number format occupying 16 bits in computer memory; it represents a wide dynamic range of numeric values by using a floating radix point. This format is a shortened (16-bit) version of the 32-bit IEEE 754 single-precision floating-point format (binary32) with the intent of accelerating machine learning and near-sensor computing. It preserves the approximate dynamic range of 32-bit floating-point numbers by retaining 8 exponent bits, but supports only an 8-bit precision rather than the 24-bit significand of the binary32 format. More so than single-precision 32-bit floating-point numbers, bfloat16 numbers are unsuitable for integer calculations, but this is not their intended use. Bfloat16 is used to reduce the storage requirements and increase the calculation speed of machine learning algorithms. The bfloat16 format was developed by Google Brain, an artificial intelligence research group at Google. It is ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Floating-point Arithmetic
In computing, floating-point arithmetic (FP) is arithmetic on subsets of real numbers formed by a ''significand'' (a Sign (mathematics), signed sequence of a fixed number of digits in some Radix, base) multiplied by an integer power of that base. Numbers of this form are called floating-point numbers. For example, the number 2469/200 is a floating-point number in base ten with five digits: 2469/200 = 12.345 = \! \underbrace_\text \! \times \! \underbrace_\text\!\!\!\!\!\!\!\overbrace^ However, 7716/625 = 12.3456 is not a floating-point number in base ten with five digits—it needs six digits. The nearest floating-point number with only five digits is 12.346. And 1/3 = 0.3333… is not a floating-point number in base ten with any finite number of digits. In practice, most floating-point systems use Binary number, base two, though base ten (decimal floating point) is also common. Floating-point arithmetic operations, such as addition and division, approximate the correspond ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
IEEE 754
The IEEE Standard for Floating-Point Arithmetic (IEEE 754) is a technical standard for floating-point arithmetic originally established in 1985 by the Institute of Electrical and Electronics Engineers (IEEE). The standard #Design rationale, addressed many problems found in the diverse floating-point implementations that made them difficult to use reliably and Software portability, portably. Many hardware floating-point units use the IEEE 754 standard. The standard defines: * ''arithmetic formats:'' sets of Binary code, binary and decimal floating-point data, which consist of finite numbers (including signed zeros and subnormal numbers), infinity, infinities, and special "not a number" values (NaNs) * ''interchange formats:'' encodings (bit strings) that may be used to exchange floating-point data in an efficient and compact form * ''rounding rules:'' properties to be satisfied when rounding numbers during arithmetic and conversions * ''operations:'' arithmetic and other operatio ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Fixed-point Arithmetic
In computing, fixed-point is a method of representing fractional (non-integer) numbers by storing a fixed number of digits of their fractional part. Dollar amounts, for example, are often stored with exactly two fractional digits, representing the cents (1/100 of dollar). More generally, the term may refer to representing fractional values as integer multiples of some fixed small unit, e.g. a fractional amount of hours as an integer multiple of ten-minute intervals. Fixed-point number representation is often contrasted to the more complicated and computationally demanding floating-point representation. In the fixed-point representation, the fraction is often expressed in the same number base as the integer part, but using negative powers of the base ''b''. The most common variants are decimal (base 10) and binary (base 2). The latter is commonly known also as binary scaling. Thus, if ''n'' fraction digits are stored, the value will always be an integer multiple of ' ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Floating-point
In computing, floating-point arithmetic (FP) is arithmetic on subsets of real numbers formed by a ''significand'' (a Sign (mathematics), signed sequence of a fixed number of digits in some Radix, base) multiplied by an integer power of that base. Numbers of this form are called floating-point numbers. For example, the number 2469/200 is a floating-point number in base ten with five digits: 2469/200 = 12.345 = \! \underbrace_\text \! \times \! \underbrace_\text\!\!\!\!\!\!\!\overbrace^ However, 7716/625 = 12.3456 is not a floating-point number in base ten with five digits—it needs six digits. The nearest floating-point number with only five digits is 12.346. And 1/3 = 0.3333… is not a floating-point number in base ten with any finite number of digits. In practice, most floating-point systems use Binary number, base two, though base ten (decimal floating point) is also common. Floating-point arithmetic operations, such as addition and division, approximate the correspond ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Bfloat16
The bfloat16 (brain floating point) floating-point format is a computer number format occupying 16 bits in computer memory; it represents a wide dynamic range of numeric values by using a floating radix point. This format is a shortened (16-bit) version of the 32-bit IEEE 754 single-precision floating-point format (binary32) with the intent of accelerating machine learning and near-sensor computing. It preserves the approximate dynamic range of 32-bit floating-point numbers by retaining 8 exponent bits, but supports only an 8-bit precision rather than the 24-bit significand of the binary32 format. More so than single-precision 32-bit floating-point numbers, bfloat16 numbers are unsuitable for integer calculations, but this is not their intended use. Bfloat16 is used to reduce the storage requirements and increase the calculation speed of machine learning algorithms. The bfloat16 format was developed by Google Brain, an artificial intelligence research group at Google. It is ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Computing
Computing is any goal-oriented activity requiring, benefiting from, or creating computer, computing machinery. It includes the study and experimentation of algorithmic processes, and the development of both computer hardware, hardware and software. Computing has scientific, engineering, mathematical, technological, and social aspects. Major computing disciplines include computer engineering, computer science, cybersecurity, data science, information systems, information technology, and software engineering. The term ''computing'' is also synonymous with counting and calculation, calculating. In earlier times, it was used in reference to the action performed by Mechanical computer, mechanical computing machines, and before that, to Computer (occupation), human computers. History The history of computing is longer than the history of computing hardware and includes the history of methods intended for pen and paper (or for chalk and slate) with or without the aid of tables. ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Double-precision Floating-point Format
Double-precision floating-point format (sometimes called FP64 or float64) is a floating-point number format, usually occupying 64 bits in computer memory; it represents a wide range of numeric values by using a floating radix point. Double precision may be chosen when the range or precision of single precision would be insufficient. In the IEEE 754 standard, the 64-bit base-2 format is officially referred to as binary64; it was called double in IEEE 754-1985. IEEE 754 specifies additional floating-point formats, including 32-bit base-2 ''single precision'' and, more recently, base-10 representations (decimal floating point). One of the first programming languages to provide floating-point data types was Fortran. Before the widespread adoption of IEEE 754-1985, the representation and properties of floating-point data types depended on the computer manufacturer and computer model, and upon decisions made by programming-language implementers. E.g., GW-BASIC's double-precision ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |