HOME
*





Mikhail Kapranov
Mikhail Kapranov, (Михаил Михайлович Капранов, born 1962) is a Russian mathematician, specializing in algebraic geometry, representation theory, mathematical physics, and category theory. He is currently a professor of the Kavli Institute for the Physics and Mathematics of the Universe at the University of Tokyo. Kapranov graduated from Lomonosov University in 1982 and received his doctorate in 1988 under the supervision of Yuri Manin at the Steklov Institute in Moscow. Afterwards he worked at the Steklov Institute and from 1990 to 1991 at Cornell University. At Northwestern University he was from 1991 to 1993 an assistant professor, from 1993 to 1995 an associate professor, and from 1995 to 1999 a full professor. He was from 1999 to 2003 a professor at University of Toronto and from 2003 to 2014 a professor at Yale University. In 1993 he was a Sloan Research Fellow. From fall 2018 to spring 2019 he was a visiting professor at the Institute for Advanced St ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Algebraic Geometry
Algebraic geometry is a branch of mathematics, classically studying zeros of multivariate polynomials. Modern algebraic geometry is based on the use of abstract algebraic techniques, mainly from commutative algebra, for solving geometrical problems about these sets of zeros. The fundamental objects of study in algebraic geometry are algebraic varieties, which are geometric manifestations of solutions of systems of polynomial equations. Examples of the most studied classes of algebraic varieties are: plane algebraic curves, which include lines, circles, parabolas, ellipses, hyperbolas, cubic curves like elliptic curves, and quartic curves like lemniscates and Cassini ovals. A point of the plane belongs to an algebraic curve if its coordinates satisfy a given polynomial equation. Basic questions involve the study of the points of special interest like the singular points, the inflection points and the points at infinity. More advanced questions involve the topo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Esquisse D'un Programme
"Esquisse d'un Programme" (Sketch of a Programme) is a famous proposal for long-term mathematical research made by the German-born, French mathematician Alexander Grothendieck in 1984. He pursued the sequence of logically linked ideas in his important project proposal from 1984 until 1988, but his proposed research continues to date to be of major interest in several branches of advanced mathematics. Grothendieck's vision provides inspiration today for several developments in mathematics such as the extension and generalization of Galois theory, which is currently being extended based on his original proposal. Brief history Submitted in 1984, the ''Esquisse d'un Programme'' was a proposal submitted by Alexander Grothendieck for a position at the Centre National de la Recherche Scientifique. The proposal was not successful, but Grothendieck obtained a special position where, while keeping his affiliation at the University of Montpellier, he was paid by the CNRS and released of his ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Living People
Related categories * :Year of birth missing (living people) / :Year of birth unknown * :Date of birth missing (living people) / :Date of birth unknown * :Place of birth missing (living people) / :Place of birth unknown * :Year of death missing / :Year of death unknown * :Date of death missing / :Date of death unknown * :Place of death missing / :Place of death unknown * :Missing middle or first names See also * :Dead people * :Template:L, which generates this category or death years, and birth year and sort keys. : {{DEFAULTSORT:Living people 21st-century people People by status ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




1962 Births
Year 196 ( CXCVI) was a leap year starting on Thursday (link will display the full calendar) of the Julian calendar. At the time, it was known as the Year of the Consulship of Dexter and Messalla (or, less frequently, year 949 ''Ab urbe condita''). The denomination 196 for this year has been used since the early medieval period, when the Anno Domini calendar era became the prevalent method in Europe for naming years. Events By place Roman Empire * Emperor Septimius Severus attempts to assassinate Clodius Albinus but fails, causing Albinus to retaliate militarily. * Emperor Septimius Severus captures and sacks Byzantium; the city is rebuilt and regains its previous prosperity. * In order to assure the support of the Roman legion in Germany on his march to Rome, Clodius Albinus is declared Augustus by his army while crossing Gaul. * Hadrian's wall in Britain is partially destroyed. China * First year of the '' Jian'an era of the Chinese Han Dynasty. * Em ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Goss Zeta Function
In the field of mathematics, the Goss zeta function, named after David Goss, is an analogue of the Riemann zeta function for function fields. proved that it satisfies an analogue of the Riemann hypothesis. proved results for a higher-dimensional generalization of the Goss zeta function. References * * *{{Citation , last1=Sheats , first1=Jeffrey T. , title=The Riemann hypothesis for the Goss zeta function for Fq /nowiki> , doi=10.1006/jnth.1998.2232 , mr=1630979 , year=1998 , journal=Journal of Number Theory The ''Journal of Number Theory'' (''JNT'') is a bimonthly peer-reviewed scientific journal covering all aspects of number theory. The journal was established in 1969 by R.P. Bambah, P. Roquette, A. Ross, A. Woods, and H. Zassenhaus (Ohio State Un ... , issn=0022-314X , volume=71 , issue=1 , pages=121–157, arxiv=math/9801158 Zeta and L-functions ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


International Congress Of Mathematicians
The International Congress of Mathematicians (ICM) is the largest conference for the topic of mathematics. It meets once every four years, hosted by the International Mathematical Union (IMU). The Fields Medals, the Nevanlinna Prize (to be renamed as the IMU Abacus Medal), the Gauss Prize, and the Chern Medal are awarded during the congress's opening ceremony. Each congress is memorialized by a printed set of Proceedings recording academic papers based on invited talks intended to be relevant to current topics of general interest. Being invited to talk at the ICM has been called "the equivalent ... of an induction to a hall of fame". History Felix Klein and Georg Cantor are credited with putting forward the idea of an international congress of mathematicians in the 1890s.A. John Coleman"Mathematics without borders": a book review ''CMS Notes'', vol 31, no. 3, April 1999, pp. 3-5 The University of Chicago, which had opened in 1892, organized an International Mathematical Con ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Victor Ginzburg
Victor Ginzburg (born 1957) is a Russian American mathematician who works in representation theory and in noncommutative geometry. He is known for his contributions to geometric representation theory, especially, for his works on representations of quantum groups and Hecke algebras, and on the geometric Langlands program (Satake equivalence of categories). He is currently a Professor of Mathematics at the University of Chicago. Career Ginzburg received his Ph.D. at Moscow State University in 1985, under the direction of Alexandre Kirillov and Israel Gelfand. Ginzburg wrote a textbook ''Representation theory and complex geometry'' with Neil Chriss on geometric representation theory. A paper by Alexander Beilinson, Ginzburg, and Wolfgang Soergel introduced the concept of Koszul duality (cf. Koszul algebra) and the technique of "mixed categories" to representation theory. Furthermore, Ginzburg and Mikhail Kapranov developed Koszul duality theory for operads. In noncommutative ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Langlands Program
In representation theory and algebraic number theory, the Langlands program is a web of far-reaching and influential conjectures about connections between number theory and geometry. Proposed by , it seeks to relate Galois groups in algebraic number theory to automorphic forms and representation theory of algebraic groups over local fields and adeles. Widely seen as the single biggest project in modern mathematical research, the Langlands program has been described by Edward Frenkel as "a kind of grand unified theory of mathematics." The Langlands program consists of some very complicated theoretical abstractions, which can be difficult even for specialist mathematicians to grasp. To oversimplify, the fundamental lemma of the project posits a direct connection between the generalized fundamental representation of a finite field with its group extension to the automorphic forms under which it is invariant. This is accomplished through abstraction to higher dimensional integr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Arthur Cayley
Arthur Cayley (; 16 August 1821 – 26 January 1895) was a prolific British mathematician who worked mostly on algebra. He helped found the modern British school of pure mathematics. As a child, Cayley enjoyed solving complex maths problems for amusement. He entered Trinity College, Cambridge, where he excelled in Greek, French, German, and Italian, as well as mathematics. He worked as a lawyer for 14 years. He postulated the Cayley–Hamilton theorem—that every square matrix is a root of its own characteristic polynomial, and verified it for matrices of order 2 and 3. He was the first to define the concept of a group in the modern way—as a set with a binary operation satisfying certain laws. Formerly, when mathematicians spoke of "groups", they had meant permutation groups. Cayley tables and Cayley graphs as well as Cayley's theorem are named in honour of Cayley. Early years Arthur Cayley was born in Richmond, London, England, on 16 August 1821. His father, Hen ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Advances In Mathematics
''Advances in Mathematics'' is a peer-reviewed scientific journal covering research on pure mathematics. It was established in 1961 by Gian-Carlo Rota. The journal publishes 18 issues each year, in three volumes. At the origin, the journal aimed at publishing articles addressed to a broader "mathematical community", and not only to mathematicians in the author's field. Herbert Busemann writes, in the preface of the first issue, "The need for expository articles addressing either all mathematicians or only those in somewhat related fields has long been felt, but little has been done outside of the USSR. The serial publication ''Advances in Mathematics'' was created in response to this demand." Abstracting and indexing The journal is abstracted and indexed in:Abstracting and Indexing
*
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Andrei Zelevinsky
Andrei Vladlenovich Zelevinsky (; 30 January 1953 – 10 April 2013) was a Russian-American mathematician who made important contributions to algebra, combinatorics, and representation theory, among other areas. Biography Zelevinsky graduated in 1969 from the Moscow Mathematical School No. 2. After winning a silver medal as a member of the USSR team at the International Mathematical Olympiad he was admitted without examination to the mathematics department of Moscow State University where he obtained his PhD in 1978 under the mentorship of Joseph Bernstein, Alexandre Kirillov and Israel Gelfand. He worked in the mathematical laboratory of Vladimir Keilis-Borok at the Institute of Earth Science (1977–85), and at the Council for Cybernetics of the Soviet Academy of Sciences (1985–90). In the early 1980s, at a great personal risk, he taught at the Jewish People's University, an unofficial organization offering first-class mathematics education to talented students denied admiss ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]