Michael W. Davis
Michael W. Davis (born April 26, 1949) is an American mathematician, author and academic. He is a Professor Emeritus of mathematics at the Ohio State University. Davis is most known for his work in the fields of geometry and topology, with a focus on the methods for constructing aspherical manifolds and spaces. He is the author of two books that include ''The Geometry and Topology of Coxeter Groups'' and ''Multiaxial Actions on Manifolds''. His notable contributions to the field of mathematics include the creation of several mathematical concepts, such as the Charney–Davis Conjecture, Davis–Moussong complex, Davis manifolds, Davis–Januszkiewicz space, and the reflection group trick. Early life and education Davis attended Princeton University where he earned a bachelor's degree in 1971. He then completed a PhD in mathematics at the same institution under the supervision of Wu-Chung Hsiang in 1975 with a thesis titled "Smooth Actions of the Classical Groups". Career Follow ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Americans
Americans are the citizens and nationals of the United States of America.; ; Although direct citizens and nationals make up the majority of Americans, many dual citizens, expatriates, and permanent residents could also legally claim American nationality. The United States is home to people of many racial and ethnic origins; consequently, American culture and law do not equate nationality with race or ethnicity, but with citizenship and an oath of permanent allegiance. Overview The majority of Americans or their ancestors immigrated to the United States or are descended from people who were brought as slaves within the past five centuries, with the exception of the Native American population and people from Hawaii, Puerto Rico, Guam, and the Philippine Islands, who became American through expansion of the country in the 19th century, additionally America expanded into American Samoa, the U.S. Virgin Islands and Northern Mariana Islands in the 20th century. ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
American Mathematical Society
The American Mathematical Society (AMS) is an association of professional mathematicians dedicated to the interests of mathematical research and scholarship, and serves the national and international community through its publications, meetings, advocacy and other programs. The society is one of the four parts of the Joint Policy Board for Mathematics and a member of the Conference Board of the Mathematical Sciences. History The AMS was founded in 1888 as the New York Mathematical Society, the brainchild of Thomas Fiske, who was impressed by the London Mathematical Society on a visit to England. John Howard Van Amringe was the first president and Fiske became secretary. The society soon decided to publish a journal, but ran into some resistance, due to concerns about competing with the American Journal of Mathematics. The result was the '' Bulletin of the American Mathematical Society'', with Fiske as editor-in-chief. The de facto journal, as intended, was influential ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Journal Of The American Mathematical Society
The ''Journal of the American Mathematical Society'' (''JAMS''), is a quarterly peer-reviewed mathematical journal published by the American Mathematical Society. It was established in January 1988. Abstracting and indexing This journal is abstracted and indexed in: 2011. American Mathematical Society. * * * * ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Princeton University Press
Princeton University Press is an independent Academic publishing, publisher with close connections to Princeton University. Its mission is to disseminate scholarship within academia and society at large. The press was founded by Whitney Darrow, with the financial support of Charles Scribner II, Charles Scribner, as a printing press to serve the Princeton community in 1905. Its distinctive building was constructed in 1911 on William Street in Princeton. Its first book was a new 1912 edition of John Witherspoon's ''Lectures on Moral Philosophy.'' History Princeton University Press was founded in 1905 by a recent Princeton graduate, Whitney Darrow, with financial support from another Princetonian, Charles Scribner II. Darrow and Scribner purchased the equipment and assumed the operations of two already existing local publishers, that of the ''Princeton Alumni Weekly'' and the Princeton Press. The new press printed both local newspapers, university documents, ''The Daily Princetonian ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Lecture Notes In Mathematics
''Lecture Notes in Mathematics'' is a book series in the field of mathematics, including articles related to both research and teaching. It was established in 1964 and was edited by A. Dold, Heidelberg and B. Eckmann, Zürich. Its publisher is Springer Science+Business Media (formerly Springer-Verlag). The intent of the series is to publish not only lecture notes, but results from seminars and conferences, more quickly than the several-years-long process of publishing polished journal papers in mathematics. In order to speed the publication process, early volumes of the series (before electronic publishing) were reproduced photographically from typewritten manuscripts. According to Earl Taft it has been "enormously successful" and "is considered a very valuable service to the mathematical community". there have been 2232 volumes in this series. See also * ''Lecture Notes in Physics'' * ''Lecture Notes in Computer Science ''Lecture Notes in Computer Science'' is a series of ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Springer Science+Business Media
Springer Science+Business Media, commonly known as Springer, is a German multinational publishing company of books, e-books and peer-reviewed journals in science, humanities, technical and medical (STM) publishing. Originally founded in 1842 in Berlin, it expanded internationally in the 1960s, and through mergers in the 1990s and a sale to venture capitalists it fused with Wolters Kluwer and eventually became part of Springer Nature in 2015. Springer has major offices in Berlin, Heidelberg, Dordrecht, and New York City. History Julius Springer founded Springer-Verlag in Berlin in 1842 and his son Ferdinand Springer grew it from a small firm of 4 employees into Germany's then second largest academic publisher with 65 staff in 1872.Chronology ". Springer Science+Business Media. In 1964, Springer expanded its business internationally, o ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Geometry & Topology
''Geometry & Topology'' is a peer-refereed, international mathematics research journal devoted to geometry and topology, and their applications. It is currently based at the University of Warwick, United Kingdom, and published by Mathematical Sciences Publishers, a nonprofit academic publishing organisation. It was founded in 1997Allyn Jackson The slow revolution of the free electronic journal Notices of the American Mathematical Society, vol. 47 (2000), no. 9, pp. 1053-1059 by a group of topologists who were dissatisfied with recent substantial rises in subscription prices of journals published by major publishing corporations. The aim was to set up a high-quality journal, capable of competing with existing journals, but with substantially lower subscription fees. The journal was open-access for its first ten years of existence and was available free to individual users, although institutions were required to pay modest subscription fees for both online access and for printed ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
L² Cohomology
In mathematics, L2 cohomology is a cohomology theory for smooth non-compact manifolds ''M'' with Riemannian metric. It is defined in the same way as de Rham cohomology except that one uses square-integrable differential forms. The notion of square-integrability makes sense because the metric on ''M'' gives rise to a norm on differential forms and a volume form. L2 cohomology, which grew in part out of L2 d-bar estimates from the 1960s, was studied cohomologically, independently by Steven Zucker (1978) and Jeff Cheeger (1979). It is closely related to intersection cohomology; indeed, the results in the preceding cited works can be expressed in terms of intersection cohomology. Another such result is the Zucker conjecture, which states that for a Hermitian locally symmetric variety the L2 cohomology is isomorphic to the intersection cohomology (with the middle perversity) of its Baily–Borel compactification (Zucker 1982). This was proved in different ways by Eduard Looijenga (1 ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Building (mathematics)
In mathematics, a building (also Tits building, named after Jacques Tits) is a combinatorial and geometric structure which simultaneously generalizes certain aspects of flag manifolds, finite projective planes, and Riemannian symmetric spaces. Buildings were initially introduced by Jacques Tits as a means to understand the structure of exceptional groups of Lie type. The more specialized theory of Bruhat–Tits buildings (named also after François Bruhat) plays a role in the study of -adic Lie groups analogous to that of the theory of symmetric spaces in the theory of Lie groups. Overview The notion of a building was invented by Jacques Tits as a means of describing simple algebraic groups over an arbitrary field. Tits demonstrated how to every such group one can associate a simplicial complex with an action of , called the spherical building of . The group imposes very strong combinatorial regularity conditions on the complexes that can arise in this fashion. B ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Artin–Tits Group
In the mathematical area of group theory, Artin groups, also known as Artin–Tits groups or generalized braid groups, are a family of infinite discrete groups defined by simple presentations. They are closely related with Coxeter groups. Examples are free groups, free abelian groups, braid groups, and right-angled Artin–Tits groups, among others. The groups are named after Emil Artin, due to his early work on braid groups in the 1920s to 1940s, and Jacques Tits who developed the theory of a more general class of groups in the 1960s. Definition An Artin–Tits presentation is a group presentation \langle S \mid R \rangle where S is a (usually finite) set of generators and R is a set of Artin–Tits relations, namely relations of the form stst\ldots = tsts\ldots for distinct s, t in S, where both sides have equal lengths, and there exists at most one relation for each pair of distinct generators s, t. An Artin–Tits group is a group that admits an Artin–Tits pre ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Coxeter Group
In mathematics, a Coxeter group, named after H. S. M. Coxeter, is an abstract group that admits a formal description in terms of reflections (or kaleidoscopic mirrors). Indeed, the finite Coxeter groups are precisely the finite Euclidean reflection groups; the symmetry groups of regular polyhedra are an example. However, not all Coxeter groups are finite, and not all can be described in terms of symmetries and Euclidean reflections. Coxeter groups were introduced in 1934 as abstractions of reflection groups , and finite Coxeter groups were classified in 1935 . Coxeter groups find applications in many areas of mathematics. Examples of finite Coxeter groups include the symmetry groups of regular polytopes, and the Weyl groups of simple Lie algebras. Examples of infinite Coxeter groups include the triangle groups corresponding to regular tessellations of the Euclidean plane and the hyperbolic plane, and the Weyl groups of infinite-dimensional Kac–Moody algebras. S ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Poincaré Duality
In mathematics, the Poincaré duality theorem, named after Henri Poincaré, is a basic result on the structure of the homology and cohomology groups of manifolds. It states that if ''M'' is an ''n''-dimensional oriented closed manifold ( compact and without boundary), then the ''k''th cohomology group of ''M'' is isomorphic to the (n-k)th homology group of ''M'', for all integers ''k'' :H^k(M) \cong H_(M). Poincaré duality holds for any coefficient ring, so long as one has taken an orientation with respect to that coefficient ring; in particular, since every manifold has a unique orientation mod 2, Poincaré duality holds mod 2 without any assumption of orientation. History A form of Poincaré duality was first stated, without proof, by Henri Poincaré in 1893. It was stated in terms of Betti numbers: The ''k''th and (n-k)th Betti numbers of a closed (i.e., compact and without boundary) orientable ''n''-manifold are equal. The ''cohomology'' concept was at that time ab ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |