Martin Klazar
   HOME





Martin Klazar
Martin Klazar (born 1966) is a Czech mathematician specializing in enumerative combinatorics and extremal combinatorics. He is a docent (associate professor) in the Department of Applied Mathematics at Charles University in Prague. Klazar is known for his work on pattern avoidance in discrete structures (such as permutations and set partitions) and on extremal problems for sequences and matrices. Education and career Klazar was born in Děčín, Czechoslovakia (now the Czech Republic) in 1966. He studied mathematics at the Charles University in Prague from 1984 to 1989, earning the degree of RNDr. (Rerum Naturalium Doctor). He received his Ph.D. from Charles University in 1995 under the supervision of Jaroslav Nešetřil, with a dissertation on combinatorial aspects of Davenport–Schinzel sequences. In 1997–98, Klazar was awarded a Humboldt Research Fellowship to conduct research at the University of Bonn in Germany under host Bernhard Korte. He later habilitated at Charles ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Děčín
Děčín (; ) is a city in the Ústí nad Labem Region of the Czech Republic. It has about 46,000 inhabitants. It is the seventth largest municipality in the country by area. Děčín is an important traffic junction. Administrative division Děčín consists of 35 municipal parts (in brackets population according to the 2021 census): *Děčín I-Děčín (4,723) *Děčín II-Nové Město (5,948) *Děčín III-Staré Město (3,687) *Děčín IV-Podmokly (5,376) *Děčín V-Rozbělesy (342) *Děčín VI-Letná (7,502) *Děčín VII-Chrochvice (1,252) *Děčín VIII-Dolní Oldřichov (704) *Děčín IX-Bynov (3,670) *Děčín X-Bělá (907) *Děčín XI-Horní Žleb (292) *Děčín XII-Vilsnice (277) *Děčín XIII-Loubí (185) *Děčín XIV-Dolní Žleb (141) *Děčín XV-Prostřední Žleb (232) *Děčín XVI-Přípeř (97) *Děčín XVII-Jalůvčí (559) *Děčín XVIII-Maxičky (100) *Děčín XIX-Čechy (195) *Děčín XX-Nová Ves (218) *Děčín XXI-Horní Oldřichov (445) *D ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Adam Marcus (mathematician)
Adam Wade Marcus (born 1979) is an American mathematician. He held the Chair of Combinatorial Analysis in the Institute of Mathematics at the École Polytechnique Fédérale de Lausanne until February 2023. The team of Marcus, Daniel Spielman and Nikhil Srivastava was awarded the Pólya Prize in 2014 for their resolution of the Kadison–Singer problem and later the Michael and Sheila Held Prize in 2021 for their solution to long-standing conjectures in the study of Ramanujan graphs. History Marcus grew up in Marietta, Georgia and was a boarding student at the Darlington School in Rome, Georgia. He attended the Washington University in St. Louis for his undergraduate degree, where he was a Compton Fellow. He then completed his doctoral studies under the supervision of Prasad Tetali at the Georgia Institute of Technology. Following his graduation in 2008, he spent four years as a Gibbs Assistant Professor in Applied Mathematics at Yale University. In 2012, Marcus cofounded Crispl ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Academic Staff Of Charles University
An academy (Attic Greek: Ἀκαδήμεια; Koine Greek Ἀκαδημία) is an institution of tertiary education. The name traces back to Plato's school of philosophy, founded approximately 386 BC at Akademia, a sanctuary of Athena, the goddess of wisdom and skill, north of Athens, Greece. The Royal Spanish Academy defines academy as scientific, literary or artistic society established with public authority and as a teaching establishment, public or private, of a professional, artistic, technical or simply practical nature. Etymology The word comes from the ''Academy'' in ancient Greece, which derives from the Athenian hero, ''Akademos''. Outside the city walls of Athens, the gymnasium was made famous by Plato as a center of learning. The sacred space, dedicated to the goddess of wisdom, Athena, had formerly been an olive grove, hence the expression "the groves of Academe". In these gardens, the philosopher Plato conversed with followers. Plato developed his sessions ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Charles University Alumni
Charles is a masculine given name predominantly found in English and French speaking countries. It is from the French form ''Charles'' of the Proto-Germanic name (in runic alphabet) or ''*karilaz'' (in Latin alphabet), whose meaning was "free man". The Old English descendant of this word was '' Ċearl'' or ''Ċeorl'', as the name of King Cearl of Mercia, that disappeared after the Norman conquest of England. The name was notably borne by Charlemagne (Charles the Great), and was at the time Latinized as ''Karolus'' (as in ''Vita Karoli Magni''), later also as '' Carolus''. Etymology The name's etymology is a Common Germanic noun ''*karilaz'' meaning "free man", which survives in English as churl (James (wikt:Appendix:Proto-Indo-European/ǵerh₂-">ĝer-, where the ĝ is a palatal consonant, meaning "to rub; to be old; grain." An old man has been worn away and is now grey with age. In some Slavic languages, the name ''Drago (given name), Drago'' (and variants: ''Drago ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




People From Děčín
The term "the people" refers to the public or common mass of people of a polity. As such it is a concept of human rights law, international law as well as constitutional law, particularly used for claims of popular sovereignty. In contrast, a people is any plurality of persons considered as a whole. Used in politics and law, the term "a people" refers to the collective or community of an ethnic group or nation. Concepts Legal Chapter One, Article One of the Charter of the United Nations states that "peoples" have the right to self-determination. Though the mere status as peoples and the right to self-determination, as for example in the case of Indigenous peoples (''peoples'', as in all groups of indigenous people, not merely all indigenous persons as in ''indigenous people''), does not automatically provide for independent sovereignty and therefore secession. Indeed, judge Ivor Jennings identified the inherent problems in the right of "peoples" to self-determination, as i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Living People
Purpose: Because living persons may suffer personal harm from inappropriate information, we should watch their articles carefully. By adding an article to this category, it marks them with a notice about sources whenever someone tries to edit them, to remind them of WP:BLP (biographies of living persons) policy that these articles must maintain a neutral point of view, maintain factual accuracy, and be properly sourced. Recent changes to these articles are listed on Special:RecentChangesLinked/Living people. Organization: This category should not be sub-categorized. Entries are generally sorted by family name In many societies, a surname, family name, or last name is the mostly hereditary portion of one's personal name that indicates one's family. It is typically combined with a given name to form the full name of a person, although several give .... Maintenance: Individuals of advanced age (over 90), for whom there has been no new documentation in the last ten ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

1966 Births
Events January * January 1 – In a coup, Colonel Jean-Bédel Bokassa takes over as military ruler of the Central African Republic, ousting President David Dacko. * January 3 – 1966 Upper Voltan coup d'état: President Maurice Yaméogo is deposed by a military coup in the Republic of Upper Volta (modern-day Burkina Faso). * January 10 ** Pakistani–Indian peace negotiations end successfully with the signing of the Tashkent Declaration, a day before the sudden death of Indian prime minister Lal Bahadur Shastri. ** Georgia House of Representatives, The House of Representatives of the US state of Georgia refuses to allow African-American representative Julian Bond to take his seat, because of his anti-war stance. * January 15 – 1966 Nigerian coup d'état: A bloody military coup is staged in Nigeria, deposing the civilian government and resulting in the death of Prime Minister Abubakar Tafawa Balewa. * January 17 ** The Nigerian coup is overturned by another faction of the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Golden Ratio
In mathematics, two quantities are in the golden ratio if their ratio is the same as the ratio of their summation, sum to the larger of the two quantities. Expressed algebraically, for quantities and with , is in a golden ratio to if \frac = \frac = \varphi, where the Greek letter Phi (letter), phi ( or ) denotes the golden ratio. The constant satisfies the quadratic equation and is an irrational number with a value of The golden ratio was called the extreme and mean ratio by Euclid, and the divine proportion by Luca Pacioli; it also goes by other names. Mathematicians have studied the golden ratio's properties since antiquity. It is the ratio of a regular pentagon's diagonal to its side and thus appears in the Straightedge and compass construction, construction of the dodecahedron and icosahedron. A golden rectangle—that is, a rectangle with an aspect ratio of —may be cut into a square and a smaller rectangle with the same aspect ratio. The golden ratio has bee ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Dénes König Prize
Dénes is a Hungarian male given name, the equivalent of Denis in English and can sometimes stand for or replace the feminine version of Den(n)is, namely ''Denise''. As with many given names, it also transitioned into a surname in the Middle Ages. Notable people with the name include: * Dénes Andrássy (1835-1913), Hungarian nobleman * Dénes Berinkey (1871-1944), a Hungarian prime minister * Dénes Birkás (1907–1996 ), Hungarian field hockey player 1936 Olympics * Dénes Dibusz (b. 1990), Hungarian football player * Dénes Farkas (1884–1973), Hungarian nobleman landowner, politician, member of the Hungarian Parliament * Dénes Gábor (1900-1979), Hungarian-British Nobel Prize laureate physicist and engineer * Dénes Gulyás (b. 1954), Hungarian tenor * Dénes Györgyi (1886-1961), Hungarian architect * Dénes Kemény (b. 1954), Hungarian water polo player * Dénes Kőnig (1884-1944), Jewish Hungarian mathematician * Dénes Lukács (colonel) (1816-1868), Hungarian artillery c ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Gábor Tardos
Gábor Tardos (born 11 July 1964) is a Hungarian mathematician, currently a professor at Central European University and previously a Canada Research Chair at Simon Fraser University. He works mainly in combinatorics and computer science. He is the younger brother of Éva Tardos. Education and career Gábor Tardos received his PhD in Mathematics from Eötvös University, Budapest in 1988. His counsellors were László Babai and Péter Pálfy. He held postdoctoral posts at the University of Chicago, Rutgers University, University of Toronto and the Princeton Institute for Advanced Study. From 2005 to 2013, he served as a Canada Research Chair of discrete and computational geometry at Simon Fraser University. He then returned to Budapest to the Alfréd Rényi Institute of Mathematics where he has served as a research fellow since 1991. Mathematical results Tardos started with a result in universal algebra: he exhibited a maximal clone of order-preserving operations that is no ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Stanley–Wilf Conjecture
The Stanley–Wilf conjecture, formulated independently by Richard P. Stanley and Herbert Wilf in the late 1980s, states that the growth rate of every proper permutation class is Exponential growth, singly exponential. It was proved by and is no longer a conjecture. Marcus and Tardos actually proved a different conjecture, due to , which had been shown to imply the Stanley–Wilf conjecture by . Statement The Stanley–Wilf conjecture states that for every permutation ''β'', there is a constant ''C'' such that the number , ''S''''n''(''β''), of permutations of length ''n'' which avoid ''β'' as a permutation pattern is at most ''C''''n''. As observed, this is equivalent to the convergence of the Limit (mathematics), limit :\lim_ \sqrt[n]. The upper bound given by Marcus and Tardos for ''C'' is Exponential function, exponential in the length of ''β''. A stronger conjecture of had stated that one could take ''C'' to be , where ''k'' denotes the length of ''β'', but this con ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]