Magnetohydrodynamical
In physics and engineering, magnetohydrodynamics (MHD; also called magneto-fluid dynamics or hydromagnetics) is a model of electrically conducting fluids that treats all interpenetrating particle species together as a single continuous medium. It is primarily concerned with the low-frequency, large-scale, magnetic behavior in plasmas and liquid metals and has applications in multiple fields including space physics, geophysics, astrophysics, and engineering. The word ''magnetohydrodynamics'' is derived from ' meaning magnetic field, ' meaning water, and ' meaning movement. The field of MHD was initiated by Hannes Alfvén, for which he received the Nobel Prize in Physics in 1970. History The MHD description of electrically conducting fluids was first developed by Hannes Alfvén in a 1942 paper published in ''Nature'' titled "Existence of Electromagnetic–Hydrodynamic Waves" which outlined his discovery of what are now referred to as ''Alfvén waves''. Alfv ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
The Sun Is An MHD System That Is Not Well Understood- 2013-04-9 14-29
''The'' is a grammatical article in English, denoting nouns that are already or about to be mentioned, under discussion, implied or otherwise presumed familiar to listeners, readers, or speakers. It is the definite article in English. ''The'' is the most frequently used word in the English language; studies and analyses of texts have found it to account for seven percent of all printed English-language words. It is derived from gendered articles in Old English which combined in Middle English and now has a single form used with nouns of any gender. The word can be used with both singular and plural nouns, and with a noun that starts with any letter. This is different from many other languages, which have different forms of the definite article for different genders or numbers. Pronunciation In most dialects, "the" is pronounced as (with the voiced dental fricative followed by a schwa) when followed by a consonant sound, and as (homophone of the archaic pronoun ''thee' ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Alfvén Wave
In plasma physics, an Alfvén wave, named after Hannes Alfvén, is a type of plasma wave in which ions oscillate in response to a restoring force provided by an Magnetic tension force, effective tension on the magnetic field lines. Definition An Alfvén wave is a low-frequency (compared to the ion gyrofrequency) travelling oscillation of the ions and magnetic field in a Plasma (physics), plasma. The ion mass density provides the inertia and the magnetic field line tension provides the restoring force. Alfvén waves propagate in the direction of the magnetic field, and the motion of the ions and the perturbation of the magnetic field are transverse to the direction of propagation. However, Alfvén waves existing at oblique incidences will smoothly change into magnetosonic waves when the propagation is perpendicular to the magnetic field. Alfvén waves are Dispersion relation, dispersionless. Alfvén velocity The low-frequency relative permittivity \varepsilon of a magnetized ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Isothermal Process
An isothermal process is a type of thermodynamic process in which the temperature ''T'' of a system remains constant: Δ''T'' = 0. This typically occurs when a system is in contact with an outside thermal reservoir, and a change in the system occurs slowly enough to allow the system to be continuously adjusted to the temperature of the reservoir through heat exchange (see quasi-equilibrium). In contrast, an '' adiabatic process'' is where a system exchanges no heat with its surroundings (''Q'' = 0). Simply, we can say that in an isothermal process * T = \text * \Delta T = 0 * dT = 0 * For ideal gases only, internal energy \Delta U = 0 while in adiabatic processes: * Q = 0. Etymology The noun '' isotherm'' is derived from the Ancient Greek words (), meaning "equal", and (), meaning "heat". Examples Isothermal processes can occur in any kind of system that has some means of regulating the temperature, including highly structured machines, and even living ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Adiabatic Process
An adiabatic process (''adiabatic'' ) is a type of thermodynamic process that occurs without transferring heat between the thermodynamic system and its Environment (systems), environment. Unlike an isothermal process, an adiabatic process transfers energy to the surroundings only as Work (thermodynamics), work and/or mass flow.. A translation may be founhere. Also a mostly reliabltranslation is to be foundin As a key concept in thermodynamics, the adiabatic process supports the theory that explains the first law of thermodynamics. The opposite term to "adiabatic" is ''diabatic''. Some chemical and physical processes occur too rapidly for energy to enter or leave the system as heat, allowing a convenient "adiabatic approximation".Bailyn, M. (1994), pp. 52–53. For example, the adiabatic flame temperature uses this approximation to calculate the upper limit of fire, flame temperature by assuming combustion loses no heat to its surroundings. In meteorology, adiabatic expansion an ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Moment Closure
In probability theory, moment closure is an approximation method used to estimate moments of a stochastic process. Introduction Typically, differential equations describing the ''i-''th moment will depend on the ''(i + 1)''-st moment. To use moment closure, a level is chosen past which all cumulants are set to zero. This leaves a resulting closed system of equations which can be solved for the moments. The approximation is particularly useful in models with a very large state space, such as stochastic population models. History The moment closure approximation was first used by Goodman and Whittle who set all third and higher-order cumulants to be zero, approximating the population distribution with a normal distribution. In 2006, Singh and Hespanha proposed a closure which approximates the population distribution as a log-normal distribution to describe biochemical reactions. Applications The approximation has been used successfully to model the spread of the Afri ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Ohm's Law
Ohm's law states that the electric current through a Electrical conductor, conductor between two Node (circuits), points is directly Proportionality (mathematics), proportional to the voltage across the two points. Introducing the constant of proportionality, the Electrical resistance, resistance, one arrives at the three mathematical equations used to describe this relationship: V = IR \quad \text\quad I = \frac \quad \text\quad R = \frac where is the current through the conductor, ''V'' is the voltage measured across the conductor and ''R'' is the electrical resistance, resistance of the conductor. More specifically, Ohm's law states that the ''R'' in this relation is constant, independent of the current. If the resistance is not constant, the previous equation cannot be called ''Ohm's law'', but it can still be used as a definition of Electrical resistance and conductance#Static and differential resistance, static/DC resistance. Ohm's law is an empirical law, empirical rel ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Equation Of State
In physics and chemistry, an equation of state is a thermodynamic equation relating state variables, which describe the state of matter under a given set of physical conditions, such as pressure, volume, temperature, or internal energy. Most modern equations of state are formulated in the Helmholtz free energy. Equations of state are useful in describing the properties of pure substances and mixtures in liquids, gases, and solid states as well as the state of matter in the interior of stars. Though there are many equations of state, none accurately predicts properties of substances under all conditions. The quest for a universal equation of state has spanned three centuries. Overview At present, there is no single equation of state that accurately predicts the properties of all substances under all conditions. An example of an equation of state correlates densities of gases and liquids to temperatures and pressures, known as the ideal gas law, which is roughly accurate ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Cauchy Momentum Equation
The Cauchy momentum equation is a vector partial differential equation put forth by Augustin-Louis Cauchy that describes the non-relativistic momentum transport in any continuum. Main equation In convective (or Lagrangian) form the Cauchy momentum equation is written as: \frac = \frac 1 \rho \nabla \cdot \boldsymbol + \mathbf where * \mathbf is the flow velocity vector field, which depends on time and space, (unit: \mathrm) * t is time, (unit: \mathrm) * \frac is the material derivative of \mathbf, equal to \partial_t\mathbf + \mathbf\cdot \nabla\mathbf, (unit: \mathrm) * \rho is the density at a given point of the continuum (for which the continuity equation holds), (unit: \mathrm) * \boldsymbol is the stress tensor, (unit: \mathrm) * \mathbf=\beginf_x\\ f_y\\ f_z\end is a vector containing all of the accelerations caused by body forces (sometimes simply gravitational acceleration), (unit: \mathrm) * \nabla\cdot\boldsymbol= \begin \dfrac + \dfrac + \dfrac \\ \dfrac + \dfra ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Continuity Equation
A continuity equation or transport equation is an equation that describes the transport of some quantity. It is particularly simple and powerful when applied to a conserved quantity, but it can be generalized to apply to any extensive quantity. Since mass, energy, momentum, electric charge and other natural quantities are conserved under their respective appropriate conditions, a variety of physical phenomena may be described using continuity equations. Continuity equations are a stronger, local form of conservation laws. For example, a weak version of the law of conservation of energy states that energy can neither be created nor destroyed—i.e., the total amount of energy in the universe is fixed. This statement does not rule out the possibility that a quantity of energy could disappear from one point while simultaneously appearing at another point. A stronger statement is that energy is ''locally'' conserved: energy can neither be created nor destroyed, ''nor'' can it ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |