HOME





Logarithmic Form
In algebraic geometry and the theory of complex manifolds, a logarithmic differential form is a differential form with poles of a certain kind. The concept was introduced by Pierre Deligne. In short, logarithmic differentials have the mildest possible singularities needed in order to give information about an open submanifold (the complement of the divisor of poles). (This idea is made precise by several versions of de Rham's theorem discussed below.) Let ''X'' be a complex manifold, ''D'' ⊂ ''X'' a reduced divisor (a sum of distinct codimension-1 complex subspaces), and ω a holomorphic ''p''-form on ''X''−''D''. If both ω and ''d''ω have a pole of order at most 1 along ''D'', then ω is said to have a logarithmic pole along ''D''. ω is also known as a logarithmic ''p''-form. The ''p''-forms with log poles along ''D'' form a subsheaf of the meromorphic ''p''-forms on ''X'', denoted :\Omega^p_X(\log D). The name comes from the fact that in complex analysis, d(\log z)=dz/z ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Algebraic Geometry
Algebraic geometry is a branch of mathematics, classically studying zeros of multivariate polynomials. Modern algebraic geometry is based on the use of abstract algebraic techniques, mainly from commutative algebra, for solving geometrical problems about these sets of zeros. The fundamental objects of study in algebraic geometry are algebraic varieties, which are geometric manifestations of solutions of systems of polynomial equations. Examples of the most studied classes of algebraic varieties are: plane algebraic curves, which include lines, circles, parabolas, ellipses, hyperbolas, cubic curves like elliptic curves, and quartic curves like lemniscates and Cassini ovals. A point of the plane belongs to an algebraic curve if its coordinates satisfy a given polynomial equation. Basic questions involve the study of the points of special interest like the singular points, the inflection points and the points at infinity. More advanced questions involve the topo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Quasi-isomorphism
In homological algebra, a branch of mathematics, a quasi-isomorphism or quism is a morphism ''A'' → ''B'' of chain complexes (respectively, cochain complexes) such that the induced morphisms :H_n(A_\bullet) \to H_n(B_\bullet)\ (\text H^n(A^\bullet) \to H^n(B^\bullet)) of homology groups (respectively, of cohomology groups) are isomorphisms for all ''n''. In the theory of model categories, quasi-isomorphisms are sometimes used as the class of weak equivalences when the objects of the category are chain or cochain complexes. This results in a homology-local theory, in the sense of Bousfield localization in homotopy theory. See also * Derived category In mathematics, the derived category ''D''(''A'') of an abelian category ''A'' is a construction of homological algebra introduced to refine and in a certain sense to simplify the theory of derived functors defined on ''A''. The construction pro ... References *Gelfand, Sergei I., Manin, Yuri I. ''Methods of Homological Alge ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Lattice (group)
In geometry and group theory, a lattice in the real coordinate space \mathbb^n is an infinite set of points in this space with the properties that coordinate wise addition or subtraction of two points in the lattice produces another lattice point, that the lattice points are all separated by some minimum distance, and that every point in the space is within some maximum distance of a lattice point. Closure under addition and subtraction means that a lattice must be a subgroup of the additive group of the points in the space, and the requirements of minimum and maximum distance can be summarized by saying that a lattice is a Delone set. More abstractly, a lattice can be described as a free abelian group of dimension n which spans the vector space \mathbb^n. For any basis of \mathbb^n, the subgroup of all linear combinations with integer coefficients of the basis vectors forms a lattice, and every lattice can be formed from a basis in this way. A lattice may be viewed as a r ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Weierstrass Zeta Function
In mathematics, the Weierstrass functions are special functions of a complex variable that are auxiliary to the Weierstrass elliptic function. They are named for Karl Weierstrass. The relation between the sigma, zeta, and \wp functions is analogous to that between the sine, cotangent, and squared cosecant functions: the logarithmic derivative of the sine is the cotangent, whose derivative is negative the squared cosecant. Weierstrass sigma function The Weierstrass sigma function associated to a two-dimensional lattice \Lambda\subset\Complex is defined to be the product : \begin \operatorname&=z\prod_ \left(1-\frac\right) e^ \\ &=z\prod_^\infty \left(1-\frac\right) e^ \end where \Lambda^ denotes \Lambda-\ or \ are a ''fundamental pair of periods''. Through careful manipulation of the Weierstrass factorization theorem as it relates also to the sine function, another potentially more manageable infinite product definition is : \operatorname=\frace^\sin\prod_^\infty\left(1-\frac\ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Elliptic Function
In the mathematical field of complex analysis, elliptic functions are a special kind of meromorphic functions, that satisfy two periodicity conditions. They are named elliptic functions because they come from elliptic integrals. Originally those integrals occurred at the calculation of the arc length of an ellipse. Important elliptic functions are Jacobi elliptic functions and the Weierstrass \wp-function. Further development of this theory led to hyperelliptic functions and modular forms. Definition A meromorphic function is called an elliptic function, if there are two \mathbb- linear independent complex numbers \omega_1,\omega_2\in\mathbb such that : f(z + \omega_1) = f(z) and f(z + \omega_2) = f(z), \quad \forall z\in\mathbb. So elliptic functions have two periods and are therefore also called ''doubly periodic''. Period lattice and fundamental domain Iff is an elliptic function with periods \omega_1,\omega_2 it also holds that : f(z+\gamma)=f(z) for every linea ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Gysin Sequence
In the field of mathematics known as algebraic topology, the Gysin sequence is a long exact sequence which relates the cohomology classes of the base space, the fiber and the total space of a sphere bundle. The Gysin sequence is a useful tool for calculating the cohomology rings given the Euler class of the sphere bundle and vice versa. It was introduced by , and is generalized by the Serre spectral sequence. Definition Consider a fiber-oriented sphere bundle with total space ''E'', base space ''M'', fiber ''S''''k'' and projection map \pi: S^k \hookrightarrow E \stackrel M. Any such bundle defines a degree ''k'' + 1 cohomology class ''e'' called the Euler class of the bundle. De Rham cohomology Discussion of the sequence is clearest with de Rham cohomology. There cohomology classes are represented by differential forms, so that ''e'' can be represented by a (''k'' + 1)-form. The projection map \pi induces a map in cohomology H^\ast called its pullbac ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Canonical Bundle
In mathematics, the canonical bundle of a non-singular algebraic variety V of dimension n over a field is the line bundle \,\!\Omega^n = \omega, which is the ''n''th exterior power of the cotangent bundle Ω on ''V''. Over the complex numbers, it is the determinant bundle of holomorphic ''n''-forms on ''V''. This is the dualising object for Serre duality on ''V''. It may equally well be considered as an invertible sheaf. The canonical class is the divisor class of a Cartier divisor ''K'' on ''V'' giving rise to the canonical bundle — it is an equivalence class for linear equivalence on ''V'', and any divisor in it may be called a canonical divisor. An anticanonical divisor is any divisor −''K'' with ''K'' canonical. The anticanonical bundle is the corresponding inverse bundle ω−1. When the anticanonical bundle of V is ample, V is called a Fano variety. The adjunction formula Suppose that ''X'' is a smooth variety and that ''D'' is a smooth divisor ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Hypersurface
In geometry, a hypersurface is a generalization of the concepts of hyperplane, plane curve, and surface. A hypersurface is a manifold or an algebraic variety of dimension , which is embedded in an ambient space of dimension , generally a Euclidean space, an affine space or a projective space. Hypersurfaces share, with surfaces in a three-dimensional space, the property of being defined by a single implicit equation, at least locally (near every point), and sometimes globally. A hypersurface in a (Euclidean, affine, or projective) space of dimension two is a plane curve. In a space of dimension three, it is a surface. For example, the equation :x_1^2+x_2^2+\cdots+x_n^2-1=0 defines an algebraic hypersurface of dimension in the Euclidean space of dimension . This hypersurface is also a smooth manifold, and is called a hypersphere or an -sphere. Smooth hypersurface A hypersurface that is a smooth manifold is called a ''smooth hypersurface''. In , a smooth hypersurf ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Projective Plane
In mathematics, a projective plane is a geometric structure that extends the concept of a plane. In the ordinary Euclidean plane, two lines typically intersect in a single point, but there are some pairs of lines (namely, parallel lines) that do not intersect. A projective plane can be thought of as an ordinary plane equipped with additional "points at infinity" where parallel lines intersect. Thus ''any'' two distinct lines in a projective plane intersect at exactly one point. Renaissance artists, in developing the techniques of drawing in perspective, laid the groundwork for this mathematical topic. The archetypical example is the real projective plane, also known as the extended Euclidean plane. This example, in slightly different guises, is important in algebraic geometry, topology and projective geometry where it may be denoted variously by , RP2, or P2(R), among other notations. There are many other projective planes, both infinite, such as the complex projective pla ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Poincaré Residue
In mathematics, the Poincaré residue is a generalization, to several complex variables and complex manifold theory, of the residue at a pole of complex function theory. It is just one of a number of such possible extensions. Given a hypersurface X \subset \mathbb^n defined by a degree d polynomial F and a rational n-form \omega on \mathbb^n with a pole of order k > 0 on X, then we can construct a cohomology class \operatorname(\omega) \in H^(X;\mathbb). If n=1 we recover the classical residue construction. Historical construction When Poincaré first introduced residues he was studying period integrals of the form\underset\iint \omega for \Gamma \in H_2(\mathbb^2 - D)where \omega was a rational differential form with poles along a divisor D. He was able to make the reduction of this integral to an integral of the form\int_\gamma \text(\omega) for \gamma \in H_1(D)where \Gamma = T(\gamma), sending \gamma to the boundary of a solid \varepsilon-tube around \gamma on the smooth lo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Integral
In mathematics, an integral assigns numbers to functions in a way that describes displacement, area, volume, and other concepts that arise by combining infinitesimal data. The process of finding integrals is called integration. Along with differentiation, integration is a fundamental, essential operation of calculus,Integral calculus is a very well established mathematical discipline for which there are many sources. See and , for example. and serves as a tool to solve problems in mathematics and physics involving the area of an arbitrary shape, the length of a curve, and the volume of a solid, among others. The integrals enumerated here are those termed definite integrals, which can be interpreted as the signed area of the region in the plane that is bounded by the graph of a given function between two points in the real line. Conventionally, areas above the horizontal axis of the plane are positive while areas below are negative. Integrals also refer to the concept of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Coherent Sheaves
In mathematics, especially in algebraic geometry and the theory of complex manifolds, coherent sheaves are a class of sheaves closely linked to the geometric properties of the underlying space. The definition of coherent sheaves is made with reference to a sheaf of rings that codifies this geometric information. Coherent sheaves can be seen as a generalization of vector bundles. Unlike vector bundles, they form an abelian category, and so they are closed under operations such as taking kernels, images, and cokernels. The quasi-coherent sheaves are a generalization of coherent sheaves and include the locally free sheaves of infinite rank. Coherent sheaf cohomology is a powerful technique, in particular for studying the sections of a given coherent sheaf. Definitions A quasi-coherent sheaf on a ringed space (X, \mathcal O_X) is a sheaf \mathcal F of \mathcal O_X- modules which has a local presentation, that is, every point in X has an open neighborhood U in which there is an ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]