Lock-free
In computer science, an algorithm is called non-blocking if failure or suspension of any thread cannot cause failure or suspension of another thread; for some operations, these algorithms provide a useful alternative to traditional blocking implementations. A non-blocking algorithm is lock-free if there is guaranteed system-wide progress, and wait-free if there is also guaranteed per-thread progress. "Non-blocking" was used as a synonym for "lock-free" in the literature until the introduction of obstruction-freedom in 2003. The word "non-blocking" was traditionally used to describe telecommunications networks that could route a connection through a set of relays "without having to re-arrange existing calls" (see Clos network). Also, if the telephone exchange "is not defective, it can always make the connection" (see nonblocking minimal spanning switch). Motivation The traditional approach to multi-threaded programming is to use locks to synchronize access to shared resou ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Software Transactional Memory
In computer science, software transactional memory (STM) is a concurrency control mechanism analogous to database transactions for controlling access to shared memory in concurrent computing. It is an alternative to lock-based synchronization. STM is a strategy implemented in software, rather than as a hardware component. A transaction in this context occurs when a piece of code executes a series of reads and writes to shared memory. These reads and writes logically occur at a single instant in time; intermediate states are not visible to other (successful) transactions. The idea of providing hardware support for transactions originated in a 1986 paper by Tom Knight. The idea was popularized by Maurice Herlihy and J. Eliot B. Moss.Maurice Herlihy and J. Eliot B. Moss. ''Transactional memory: architectural support for lock-free data structures.'' Proceedings of the 20th annual international symposium on Computer architecture (ISCA '93). Volume 21, Issue 2, May 1993. In 1995 Nir Sha ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Compare-and-swap
In computer science, compare-and-swap (CAS) is an atomic instruction used in multithreading to achieve synchronization. It compares the contents of a memory location with a given value and, only if they are the same, modifies the contents of that memory location to a new given value. This is done as a single atomic operation. The atomicity guarantees that the new value is calculated based on up-to-date information; if the value had been updated by another thread in the meantime, the write would fail. The result of the operation must indicate whether it performed the substitution; this can be done either with a simple boolean response (this variant is often called compare-and-set), or by returning the value read from the memory location (''not'' the value written to it). Overview A compare-and-swap operation is an atomic version of the following pseudocode, where denotes access through a pointer: function cas(p: pointer to int, old: int, new: int) is if *p ≠ old ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Lock (computer Science)
In computer science, a lock or mutex (from mutual exclusion) is a synchronization primitive: a mechanism that enforces limits on access to a resource when there are many threads of execution. A lock is designed to enforce a mutual exclusion concurrency control policy, and with a variety of possible methods there exists multiple unique implementations for different applications. Types Generally, locks are ''advisory locks'', where each thread cooperates by acquiring the lock before accessing the corresponding data. Some systems also implement ''mandatory locks'', where attempting unauthorized access to a locked resource will force an exception in the entity attempting to make the access. The simplest type of lock is a binary semaphore. It provides exclusive access to the locked data. Other schemes also provide shared access for reading data. Other widely implemented access modes are exclusive, intend-to-exclude and intend-to-upgrade. Another way to classify locks is by what hap ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Linearizability
In concurrent programming, an operation (or set of operations) is linearizable if it consists of an ordered list of invocation and response events ( event), that may be extended by adding response events such that: # The extended list can be re-expressed as a sequential history (is serializable). # That sequential history is a subset of the original unextended list. Informally, this means that the unmodified list of events is linearizable if and only if its invocations were serializable, but some of the responses of the serial schedule have yet to return. In a concurrent system, processes can access a shared object at the same time. Because multiple processes are accessing a single object, there may arise a situation in which while one process is accessing the object, another process changes its contents. Making a system linearizable is one solution to this problem. In a linearizable system, although operations overlap on a shared object, each operation appears to take place ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Parallel Computing
Parallel computing is a type of computation in which many calculations or processes are carried out simultaneously. Large problems can often be divided into smaller ones, which can then be solved at the same time. There are several different forms of parallel computing: bit-level, instruction-level, data, and task parallelism. Parallelism has long been employed in high-performance computing, but has gained broader interest due to the physical constraints preventing frequency scaling.S.V. Adve ''et al.'' (November 2008)"Parallel Computing Research at Illinois: The UPCRC Agenda" (PDF). Parallel@Illinois, University of Illinois at Urbana-Champaign. "The main techniques for these performance benefits—increased clock frequency and smarter but increasingly complex architectures—are now hitting the so-called power wall. The computer industry has accepted that future performance increases must largely come from increasing the number of processors (or cores) on a die, rather tha ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Livelock
In concurrent computing, deadlock is any situation in which no member of some group of entities can proceed because each waits for another member, including itself, to take action, such as sending a message or, more commonly, releasing a lock. Deadlocks are a common problem in multiprocessing systems, parallel computing, and distributed systems, because in these contexts systems often use software or hardware locks to arbitrate shared resources and implement process synchronization. In an operating system, a deadlock occurs when a process or thread enters a waiting state because a requested system resource is held by another waiting process, which in turn is waiting for another resource held by another waiting process. If a process remains indefinitely unable to change its state because resources requested by it are being used by another process that itself is waiting, then the system is said to be in a deadlock. In a communications system, deadlocks occur mainly due to l ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mutual Exclusion
In computer science, mutual exclusion is a property of concurrency control, which is instituted for the purpose of preventing race conditions. It is the requirement that one thread of execution never enters a critical section while a concurrent thread of execution is already accessing said critical section, which refers to an interval of time during which a thread of execution accesses a shared resource or shared memory. The shared resource is a data object, which two or more concurrent threads are trying to modify (where two concurrent read operations are permitted but, no two concurrent write operations or one read and one write are permitted, since it leads to data inconsistency). Mutual exclusion algorithm ensures that if a process is already performing write operation on a data object ritical sectionno other process/thread is allowed to access/modify the same object until the first process has finished writing upon the data object ritical sectionand released the object ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Deadlock
In concurrent computing, deadlock is any situation in which no member of some group of entities can proceed because each waits for another member, including itself, to take action, such as sending a message or, more commonly, releasing a lock. Deadlocks are a common problem in multiprocessing systems, parallel computing, and distributed systems, because in these contexts systems often use software or hardware locks to arbitrate shared resources and implement process synchronization. In an operating system, a deadlock occurs when a process or thread enters a waiting state because a requested system resource is held by another waiting process, which in turn is waiting for another resource held by another waiting process. If a process remains indefinitely unable to change its state because resources requested by it are being used by another process that itself is waiting, then the system is said to be in a deadlock. In a communications system, deadlocks occur mainly due t ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Resource Starvation
In computer science, resource starvation is a problem encountered in concurrent computing where a process is perpetually denied necessary resources to process its work. Starvation may be caused by errors in a scheduling or mutual exclusion algorithm, but can also be caused by resource leaks, and can be intentionally caused via a denial-of-service attack such as a fork bomb. When starvation is impossible in a concurrent algorithm, the algorithm is called starvation-free, lockout-freed or said to have finite bypass. This property is an instance of liveness, and is one of the two requirements for any mutual exclusion algorithm; the other being correctness. The name "finite bypass" means that any process (concurrent part) of the algorithm is bypassed at most a finite number times before being allowed access to the shared resource. Scheduling Starvation is usually caused by an overly simplistic scheduling algorithm. For example, if a (poorly designed) multi-tasking system always s ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Pre-emptive Multitasking
In computing, preemption is the act of temporarily interrupting an executing task, with the intention of resuming it at a later time. This interrupt is done by an external scheduler with no assistance or cooperation from the task. This preemptive scheduler usually runs in the most privileged protection ring, meaning that interruption and resuming are considered highly secure actions. Such a change in the currently executing task of a processor is known as context switching. User mode and kernel mode In any given system design, some operations performed by the system may not be preemptable. This usually applies to kernel functions and service interrupts which, if not permitted to run to completion, would tend to produce race conditions resulting in deadlock. Barring the scheduler from preempting tasks while they are processing kernel functions simplifies the kernel design at the expense of system responsiveness. The distinction between user mode and kernel mode, which ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Multi-core Processor
A multi-core processor is a microprocessor on a single integrated circuit with two or more separate processing units, called cores, each of which reads and executes program instructions. The instructions are ordinary CPU instructions (such as add, move data, and branch) but the single processor can run instructions on separate cores at the same time, increasing overall speed for programs that support multithreading or other parallel computing techniques. Manufacturers typically integrate the cores onto a single integrated circuit die (known as a chip multiprocessor or CMP) or onto multiple dies in a single chip package. The microprocessors currently used in almost all personal computers are multi-core. A multi-core processor implements multiprocessing in a single physical package. Designers may couple cores in a multi-core device tightly or loosely. For example, cores may or may not share caches, and they may implement message passing or shared-memory inter-core comm ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Critical Section
In concurrent programming, concurrent accesses to shared resources can lead to unexpected or erroneous behavior, so parts of the program where the shared resource is accessed need to be protected in ways that avoid the concurrent access. One way to do so is known as a critical section or critical region. This protected section cannot be entered by more than one process or thread at a time; others are suspended until the first leaves the critical section. Typically, the critical section accesses a shared resource, such as a data structure, a peripheral device, or a network connection, that would not operate correctly in the context of multiple concurrent accesses. Need for critical sections Different codes or processes may consist of the same variable or other resources that need to be read or written but whose results depend on the order in which the actions occur. For example, if a variable is to be read by process A, and process B has to write to the same variabl ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |