HOME





Local Average Treatment Effect
In econometrics and related empirical fields, the local average treatment effect (LATE), also known as the complier average causal effect (CACE), is the effect of a treatment for subjects who comply with the experimental treatment assigned to their sample group. It is not to be confused with the average treatment effect (ATE), which includes compliers and non-compliers together. Compliance refers to the human-subject response to a proposed experimental treatment condition. Similar to the ATE, the LATE is calculated but does not include non-compliant parties. If the goal is to evaluate the effect of a treatment in ideal, compliant subjects, the LATE value will give a more precise estimate. However, it may lack external validity by ignoring the effect of non-compliance that is likely to occur in the real-world deployment of a treatment method. The LATE can be estimated by a ratio of the estimated intent-to-treat effect and the estimated proportion of compliers, or alternatively throu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Econometrics
Econometrics is an application of statistical methods to economic data in order to give empirical content to economic relationships. M. Hashem Pesaran (1987). "Econometrics", '' The New Palgrave: A Dictionary of Economics'', v. 2, p. 8 p. 8–22 Reprinted in J. Eatwell ''et al.'', eds. (1990). ''Econometrics: The New Palgrave''p. 1 p. 1–34Abstract ( 2008 revision by J. Geweke, J. Horowitz, and H. P. Pesaran). More precisely, it is "the quantitative analysis of actual economic phenomena based on the concurrent development of theory and observation, related by appropriate methods of inference." An introductory economics textbook describes econometrics as allowing economists "to sift through mountains of data to extract simple relationships." Jan Tinbergen is one of the two founding fathers of econometrics. The other, Ragnar Frisch, also coined the term in the sense in which it is used today. A basic tool for econometrics is the multiple linear regression model. ''Econome ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Structural Equation Modeling
Structural equation modeling (SEM) is a diverse set of methods used by scientists for both observational and experimental research. SEM is used mostly in the social and behavioral science fields, but it is also used in epidemiology, business, and other fields. A common definition of SEM is, "...a class of methodologies that seeks to represent hypotheses about the means, variances, and covariances of observed data in terms of a smaller number of 'structural' parameters defined by a hypothesized underlying conceptual or theoretical model,". SEM involves a model representing how various aspects of some phenomenon are thought to causally connect to one another. Structural equation models often contain postulated causal connections among some latent variables (variables thought to exist but which can't be directly observed). Additional causal connections link those latent variables to observed variables whose values appear in a data set. The causal connections are represented using ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Ignorability
In statistics, ignorability is a feature of an experiment design whereby the method of data collection (and the nature of missing data) does not depend on the missing data. A missing data mechanism such as a treatment assignment or survey sampling strategy is "ignorable" if the missing data matrix, which indicates which variables are observed or missing, is independent of the missing data conditional on the observed data. It has also been called unconfoundedness, selection on the observables, or no omitted variable bias. This idea is part of the Rubin Causal Inference Model, developed by Donald Rubin in collaboration with Paul Rosenbaum in the early 1970s. The exact definition differs between their articles in that period. In a 1978 article, Rubin discusses ''ignorable assignment mechanisms'', which can be understood as the way individuals are assigned to treatment groups being irrelevant for the data analysis, given everything that is recorded about that individual. In a 1983 p ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Amanda Kowalski
Amanda Kowalski is an American health economist serving as the Gail Wilensky Professor of Applied Economics at the University of Michigan. She is an elected member of the executive committee of the American Economic Association, and a research associate at the health, public economics, and aging programs of the National Bureau of Economic Research. Kowalski's research focuses on health policy, in particular on the targeting of treatments and health insurance expansions to those that need them most. She is the winner of the 2019 ASHEcon medal, awarded by the American Society of Health Economists to the best researcher under the age of 40. Education Kowalski received her AB in Economics from Harvard University in 2003, and her PhD in economics from the Massachusetts Institute of Technology in 2008, where her doctoral research was supervised by Jonathan Gruber and Jerry Hausman. Between her undergraduate and graduate studies, Kowalski worked as a research assistant at the White H ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Ignorability
In statistics, ignorability is a feature of an experiment design whereby the method of data collection (and the nature of missing data) does not depend on the missing data. A missing data mechanism such as a treatment assignment or survey sampling strategy is "ignorable" if the missing data matrix, which indicates which variables are observed or missing, is independent of the missing data conditional on the observed data. It has also been called unconfoundedness, selection on the observables, or no omitted variable bias. This idea is part of the Rubin Causal Inference Model, developed by Donald Rubin in collaboration with Paul Rosenbaum in the early 1970s. The exact definition differs between their articles in that period. In a 1978 article, Rubin discusses ''ignorable assignment mechanisms'', which can be understood as the way individuals are assigned to treatment groups being irrelevant for the data analysis, given everything that is recorded about that individual. In a 1983 p ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




2SLS
In statistics, econometrics, epidemiology and related disciplines, the method of instrumental variables (IV) is used to estimate causal relationships when controlled experiments are not feasible or when a treatment is not successfully delivered to every unit in a randomized experiment. Intuitively, IVs are used when an explanatory variable of interest is correlated with the error term (endogenous), in which case ordinary least squares and ANOVA give biased results. A valid instrument induces changes in the explanatory variable (is correlated with the endogenous variable) but has no independent effect on the dependent variable and is not correlated with the error term, allowing a researcher to uncover the causal effect of the explanatory variable on the dependent variable. Instrumental variable methods allow for consistent estimation when the explanatory variables (covariates) are correlated with the error terms in a regression model. Such correlation may occur when: # changes ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Probit Model
In statistics, a probit model is a type of regression where the dependent variable can take only two values, for example married or not married. The word is a portmanteau, coming from ''probability'' + ''unit''. The purpose of the model is to estimate the probability that an observation with particular characteristics will fall into a specific one of the categories; moreover, classifying observations based on their predicted probabilities is a type of binary classification model. A probit model is a popular specification for a binary response model. As such it treats the same set of problems as does logistic regression using similar techniques. When viewed in the generalized linear model framework, the probit model employs a probit link function. It is most often estimated using the maximum likelihood procedure, such an estimation being called a probit regression. Conceptual framework Suppose a response variable ''Y'' is ''binary'', that is it can have only two possible o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Maximum Likelihood Estimation
In statistics, maximum likelihood estimation (MLE) is a method of estimation theory, estimating the Statistical parameter, parameters of an assumed probability distribution, given some observed data. This is achieved by Mathematical optimization, maximizing a likelihood function so that, under the assumed statistical model, the Realization (probability), observed data is most probable. The point estimate, point in the parameter space that maximizes the likelihood function is called the maximum likelihood estimate. The logic of maximum likelihood is both intuitive and flexible, and as such the method has become a dominant means of statistical inference. If the likelihood function is Differentiable function, differentiable, the derivative test for finding maxima can be applied. In some cases, the first-order conditions of the likelihood function can be solved analytically; for instance, the ordinary least squares estimator for a linear regression model maximizes the likelihood when ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Local Average Treatment Effect
In econometrics and related empirical fields, the local average treatment effect (LATE), also known as the complier average causal effect (CACE), is the effect of a treatment for subjects who comply with the experimental treatment assigned to their sample group. It is not to be confused with the average treatment effect (ATE), which includes compliers and non-compliers together. Compliance refers to the human-subject response to a proposed experimental treatment condition. Similar to the ATE, the LATE is calculated but does not include non-compliant parties. If the goal is to evaluate the effect of a treatment in ideal, compliant subjects, the LATE value will give a more precise estimate. However, it may lack external validity by ignoring the effect of non-compliance that is likely to occur in the real-world deployment of a treatment method. The LATE can be estimated by a ratio of the estimated intent-to-treat effect and the estimated proportion of compliers, or alternatively throu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Maximum Likelihood Estimation
In statistics, maximum likelihood estimation (MLE) is a method of estimation theory, estimating the Statistical parameter, parameters of an assumed probability distribution, given some observed data. This is achieved by Mathematical optimization, maximizing a likelihood function so that, under the assumed statistical model, the Realization (probability), observed data is most probable. The point estimate, point in the parameter space that maximizes the likelihood function is called the maximum likelihood estimate. The logic of maximum likelihood is both intuitive and flexible, and as such the method has become a dominant means of statistical inference. If the likelihood function is Differentiable function, differentiable, the derivative test for finding maxima can be applied. In some cases, the first-order conditions of the likelihood function can be solved analytically; for instance, the ordinary least squares estimator for a linear regression model maximizes the likelihood when ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Inverse Probability Weighting
Inverse probability weighting is a statistical technique for estimating quantities related to a population other than the one from which the data was collected. Study designs with a disparate sampling population and population of target inference (target population) are common in application. There may be prohibitive factors barring researchers from directly sampling from the target population such as cost, time, or ethical concerns. A solution to this problem is to use an alternate design strategy, e.g. stratified sampling. Weighting, when correctly applied, can potentially improve the efficiency and reduce the bias of unweighted estimators. One very early weighted estimator is the Horvitz–Thompson estimator of the mean. When the sampling probability is known, from which the sampling population is drawn from the target population, then the inverse of this probability is used to weight the observations. This approach has been generalized to many aspects of statistics under vario ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]