HOME





List Of Geometry Topics
Geometry is a branch of mathematics concerned with questions of shape, size, relative position of figures, and the properties of space. Geometry is one of the oldest mathematical sciences. Types, methodologies, and terminologies of geometry. * Absolute geometry * Affine geometry * Algebraic geometry * Analytic geometry * Birational geometry * Complex geometry * Computational geometry * Conformal geometry * Constructive solid geometry * Contact geometry * Convex geometry * Descriptive geometry * Differential geometry * Digital geometry * Discrete geometry * Distance geometry * Elliptic geometry * Enumerative geometry * Epipolar geometry * Euclidean geometry * Finite geometry * Fractal geometry * Geometry of numbers * Hyperbolic geometry * Incidence geometry * Information geometry * Integral geometry * Inversive geometry * Inversive ring geometry * Klein geometry * Lie sphere geometry * Non-Euclidean geometry * Noncommutative algebraic geometry * Noncommut ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Differential Geometry
Differential geometry is a Mathematics, mathematical discipline that studies the geometry of smooth shapes and smooth spaces, otherwise known as smooth manifolds. It uses the techniques of Calculus, single variable calculus, vector calculus, linear algebra and multilinear algebra. The field has its origins in the study of spherical geometry as far back as classical antiquity, antiquity. It also relates to astronomy, the geodesy of the Earth, and later the study of hyperbolic geometry by Nikolai Lobachevsky, Lobachevsky. The simplest examples of smooth spaces are the Differential geometry of curves, plane and space curves and Differential geometry of surfaces, surfaces in the three-dimensional Euclidean space, and the study of these shapes formed the basis for development of modern differential geometry during the 18th and 19th centuries. Since the late 19th century, differential geometry has grown into a field concerned more generally with geometric structures on differentiable ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Information Geometry
Information geometry is an interdisciplinary field that applies the techniques of differential geometry to study probability theory and statistics. It studies statistical manifolds, which are Riemannian manifolds whose points correspond to probability distributions. Introduction Historically, information geometry can be traced back to the work of C. R. Rao, who was the first to treat the Fisher matrix as a Riemannian metric. The modern theory is largely due to Shun'ichi Amari, whose work has been greatly influential on the development of the field. Classically, information geometry considered a parametrized statistical model as a Riemannian manifold, Riemannian, conjugate connection, statistical, and dually flat manifolds. Unlike usual smooth manifolds with tensor metric and Levi-Civita connection, these take into account conjugate connection, torsion, and Amari-Chentsov metric. All presented above geometric structures find application in information theory and machine lea ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Incidence Geometry
In mathematics, incidence geometry is the study of incidence structures. A geometric structure such as the Euclidean plane is a complicated object that involves concepts such as length, angles, continuity, betweenness, and incidence. An ''incidence structure'' is what is obtained when all other concepts are removed and all that remains is the data about which points lie on which lines. Even with this severe limitation, theorems can be proved and interesting facts emerge concerning this structure. Such fundamental results remain valid when additional concepts are added to form a richer geometry. It sometimes happens that authors blur the distinction between a study and the objects of that study, so it is not surprising to find that some authors refer to incidence structures as incidence geometries. Incidence structures arise naturally and have been studied in various areas of mathematics. Consequently, there are different terminologies to describe these objects. In graph theory th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hyperbolic Geometry
In mathematics, hyperbolic geometry (also called Lobachevskian geometry or János Bolyai, Bolyai–Nikolai Lobachevsky, Lobachevskian geometry) is a non-Euclidean geometry. The parallel postulate of Euclidean geometry is replaced with: :For any given line ''R'' and point ''P'' not on ''R'', in the plane containing both line ''R'' and point ''P'' there are at least two distinct lines through ''P'' that do not intersect ''R''. (Compare the above with Playfair's axiom, the modern version of Euclid's parallel postulate.) The hyperbolic plane is a plane (mathematics), plane where every point is a saddle point. Hyperbolic plane geometry is also the geometry of pseudosphere, pseudospherical surfaces, surfaces with a constant negative Gaussian curvature. Saddle surfaces have negative Gaussian curvature in at least some regions, where they local property, locally resemble the hyperbolic plane. The hyperboloid model of hyperbolic geometry provides a representation of event (relativity ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Geometry Of Numbers
Geometry of numbers is the part of number theory which uses geometry for the study of algebraic numbers. Typically, a ring of algebraic integers is viewed as a lattice (group), lattice in \mathbb R^n, and the study of these lattices provides fundamental information on algebraic numbers. initiated this line of research at the age of 26 in his work ''The Geometry of Numbers''. The geometry of numbers has a close relationship with other fields of mathematics, especially functional analysis and Diophantine approximation, the problem of finding rational numbers that approximate an irrational number, irrational quantity. Minkowski's results Suppose that \Gamma is a Lattice (group), lattice in n-dimensional Euclidean space \mathbb^n and K is a convex centrally symmetric body. Minkowski's theorem, sometimes called Minkowski's first theorem, states that if \operatorname (K)>2^n \operatorname(\mathbb^n/\Gamma), then K contains a nonzero vector in \Gamma. The successive minimum \lamb ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Fractal Geometry
In mathematics, a fractal is a geometric shape containing detailed structure at arbitrarily small scales, usually having a fractal dimension strictly exceeding the topological dimension. Many fractals appear similar at various scales, as illustrated in successive magnifications of the Mandelbrot set. This exhibition of similar patterns at increasingly smaller scales is called self-similarity, also known as expanding symmetry or unfolding symmetry; if this replication is exactly the same at every scale, as in the Menger sponge, the shape is called affine self-similar. Fractal geometry lies within the mathematical branch of measure theory. One way that fractals are different from finite geometric figures is how they scale. Doubling the edge lengths of a filled polygon multiplies its area by four, which is two (the ratio of the new to the old side length) raised to the power of two (the conventional dimension of the filled polygon). Likewise, if the radius of a filled sph ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Finite Geometry
A finite geometry is any geometry, geometric system that has only a finite set, finite number of point (geometry), points. The familiar Euclidean geometry is not finite, because a Euclidean line contains infinitely many points. A geometry based on the graphics displayed on a computer screen, where the pixels are considered to be the points, would be a finite geometry. While there are many systems that could be called finite geometries, attention is mostly paid to the finite projective space, projective and affine spaces because of their regularity and simplicity. Other significant types of finite geometry are finite Möbius plane, Möbius or inversive planes and Laguerre planes, which are examples of a general type called Benz planes, and their higher-dimensional analogs such as higher finite inversive geometry, inversive geometries. Finite geometries may be constructed via linear algebra, starting from vector spaces over a finite field; the affine and projective planes so const ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Euclidean Geometry
Euclidean geometry is a mathematical system attributed to ancient Greek mathematics, Greek mathematician Euclid, which he described in his textbook on geometry, ''Euclid's Elements, Elements''. Euclid's approach consists in assuming a small set of intuitively appealing axioms (postulates) and deducing many other propositions (theorems) from these. One of those is the parallel postulate which relates to parallel lines on a Euclidean plane. Although many of Euclid's results had been stated earlier,. Euclid was the first to organize these propositions into a logic, logical system in which each result is ''mathematical proof, proved'' from axioms and previously proved theorems. The ''Elements'' begins with plane geometry, still taught in secondary school (high school) as the first axiomatic system and the first examples of mathematical proofs. It goes on to the solid geometry of three dimensions. Much of the ''Elements'' states results of what are now called algebra and number theory ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Epipolar Geometry
Epipolar geometry is the geometry of stereo vision#Computer stereo vision, stereo vision. When two cameras view a 3D scene from two distinct positions, there are a number of geometric relations between the 3D points and their projections onto the 2D images that lead to constraints between the image points. These relations are derived based on the assumption that the cameras can be approximated by the pinhole camera model. Definitions The #Epipolar constraint and triangulation, figure below depicts two pinhole cameras looking at point X. In real cameras, the image plane is actually behind the focal center, and produces an image that is symmetric about the focal center of the lens. Here, however, the problem is simplified by placing a ''virtual image plane'' in front of the focal center i.e. optical center of each camera lens to produce an image not transformed by the symmetry. OL and OR represent the centers of symmetry of the two cameras lenses. X represents the point of inter ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Enumerative Geometry
In mathematics, enumerative geometry is the branch of algebraic geometry concerned with counting numbers of solutions to geometric questions, mainly by means of intersection theory. History The problem of Apollonius is one of the earliest examples of enumerative geometry. This problem asks for the number and construction of circles that are tangent to three given circles, points or lines. In general, the problem for three given circles has eight solutions, which can be seen as 23, each tangency condition imposing a quadratic condition on the space of circles. However, for special arrangements of the given circles, the number of solutions may also be any integer from 0 (no solutions) to six; there is no arrangement for which there are seven solutions to Apollonius' problem. Key tools A number of tools, ranging from the elementary to the more advanced, include: * Dimension counting * Bézout's theorem * Schubert calculus, and more generally characteristic classes in cohomology * ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Elliptic Geometry
Elliptic geometry is an example of a geometry in which Euclid's parallel postulate does not hold. Instead, as in spherical geometry, there are no parallel lines since any two lines must intersect. However, unlike in spherical geometry, two lines are usually assumed to intersect at a single point (rather than two). Because of this, the elliptic geometry described in this article is sometimes referred to as ''single elliptic geometry'' whereas spherical geometry is sometimes referred to as ''double elliptic geometry''. The appearance of this geometry in the nineteenth century stimulated the development of non-Euclidean geometry generally, including hyperbolic geometry. Elliptic geometry has a variety of properties that differ from those of classical Euclidean plane geometry. For example, the sum of the interior angles of any triangle is always greater than 180°. Definitions Elliptic geometry may be derived from spherical geometry by identifying antipodal points of the sphere ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]