HOME





List Of Intel Xeon Processors (Sandy Bridge-based)
"Sandy Bridge (microarchitecture), Gladden" (32 nm) * All models support: ''MMX (instruction set), MMX, Streaming SIMD Extensions, SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2, Advanced Vector Extensions, AVX, Enhanced Intel SpeedStep Technology (EIST), Intel 64, XD bit (an NX bit implementation), Trusted Execution Technology, TXT, Intel VT, Intel VT-x, Extended Page Table, Intel EPT, Intel VT-d, Hyper-threading, AES instruction set, AES-NI.'' * All models support uni-processor configurations only. * Die (integrated circuit), Die size:216 mm² * Stepping (version numbers), Steppings: D2 Xeon E3-11xx (uniprocessor) "Sandy Bridge (microarchitecture), Sandy Bridge" (32 nm) * All models support: ''MMX (instruction set), MMX, Streaming SIMD Extensions, SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2, Advanced Vector Extensions, AVX, Enhanced Intel SpeedStep Technology (EIST), Intel 64, XD bit (an NX bit implementation), Trusted Execution Technology, TXT, Intel VT, Intel VT-x, Extended ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Sandy Bridge (microarchitecture)
Sandy Bridge is the codename for Intel's 32 nm microarchitecture used in the second generation of the Intel Core processors ( Core i7, i5, i3). The Sandy Bridge microarchitecture is the successor to Nehalem and Westmere microarchitecture. Intel demonstrated a Sandy Bridge processor in 2009, and released first products based on the architecture in January 2011 under the Core brand. Sandy Bridge is manufactured in the 32 nm process and has a soldered contact with the die and IHS (Integrated Heat Spreader), while Intel's subsequent generation Ivy Bridge uses a 22 nm die shrink and a TIM (Thermal Interface Material) between the die and the IHS. Technology Intel demonstrated a Sandy Bridge processor with A1 stepping at 2  GHz during the Intel Developer Forum in September 2009. Upgraded features from Nehalem include: CPU * Intel Turbo Boost 2.0 * 32 KB data + 32 KB instruction L1 cache and 256 KB L2 cache per core * Shared L3 cache which inc ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Die (integrated Circuit)
A die, in the context of integrated circuits, is a small block of semiconducting material on which a given functional circuit is fabricated. Typically, integrated circuits are produced in large batches on a single wafer of electronic-grade silicon (EGS) or other semiconductor (such as GaAs) through processes such as photolithography. The wafer is cut ( diced) into many pieces, each containing one copy of the circuit. Each of these pieces is called a die. There are three commonly used plural forms: ''dice'', ''dies'' and ''die''. To simplify handling and integration onto a printed circuit board, most dies are packaged in various forms. Manufacturing process Most dies are composed of silicon and used for integrated circuits. The process begins with the production of monocrystalline silicon ingots. These ingots are then sliced into disks with a diameter of up to 300 mm.
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Turbo Boost
Intel Turbo Boost is Intel's trade name for central processing units (CPUs) dynamic frequency scaling feature that automatically raises certain versions of its operating frequency when demanding tasks are running, thus enabling a higher resulting performance. The frequency is accelerated when the operating system requests the highest performance state of the processor. Processor performance states are defined by the Advanced Configuration and Power Interface (ACPI) specification, an open standard supported by all major operating systems; no additional software or drivers are required to support the technology. The design concept behind Turbo Boost is commonly referred to as "dynamic overclocking". When the workload on the processor calls for faster performance, the processor's clock will try to increase the operating frequency in regular increments as required to meet demand. The increased clock rate is limited by the processor's power, current, and thermal limits, the number ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Chipkill
__NOTOC__ Chipkill is IBM's trademark for a form of advanced error checking and correcting (ECC) computer memory technology that protects computer memory systems from any single memory chip failure as well as multi-bit errors from any portion of a single memory chip. One simple scheme to perform this function scatters the bits of a Hamming code ECC word across multiple memory chips, such that the failure of any single memory chip will affect only one ECC bit per word. This allows memory contents to be reconstructed despite the complete failure of one chip. Typical implementations use more advanced codes, such as a BCH code, that can correct multiple bits with less overhead. Chipkill is frequently combined with dynamic bit-steering, so that if a chip fails (or has exceeded a threshold of bit errors), another, spare, memory chip is used to replace the failed chip. The concept is similar to that of RAID, which protects against disk failure, except that now the concept is applied to ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Intel VT-c
x86 virtualization is the use of hardware-assisted virtualization capabilities on an x86/x86-64 CPU. In the late 1990s x86 virtualization was achieved by complex software techniques, necessary to compensate for the processor's lack of hardware-assisted virtualization capabilities while attaining reasonable performance. In 2005 and 2006, both Intel ( VT-x) and AMD (AMD-V) introduced limited hardware virtualization support that allowed simpler virtualization software but offered very few speed benefits. Greater hardware support, which allowed substantial speed improvements, came with later processor models. Software-based virtualization The following discussion focuses only on virtualization of the x86 architecture protected mode. In protected mode the operating system kernel runs at a higher privilege such as ring 0, and applications at a lower privilege such as ring 3. In software-based virtualization, a host OS has direct access to hardware while the guest OSs have limited a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Intel VT-x
x86 virtualization is the use of hardware-assisted virtualization capabilities on an x86/x86-64 CPU. In the late 1990s x86 virtualization was achieved by complex software techniques, necessary to compensate for the processor's lack of hardware-assisted virtualization capabilities while attaining reasonable performance. In 2005 and 2006, both Intel ( VT-x) and AMD (AMD-V) introduced limited hardware virtualization support that allowed simpler virtualization software but offered very few speed benefits. Greater hardware support, which allowed substantial speed improvements, came with later processor models. Software-based virtualization The following discussion focuses only on virtualization of the x86 architecture protected mode. In protected mode the operating system kernel runs at a higher privilege such as ring 0, and applications at a lower privilege such as ring 3. In software-based virtualization, a host OS has direct access to hardware while the guest OSs have limited ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Sandy Bridge-E
Intel Sandy Bridge-based Xeon microprocessors (often referred to as Sandy Bridge-E) are microprocessors based on the Intel's 32 nm Sandy Bridge architecture for servers, workstations, and high-end desktops. It succeeds the six-core Gulftown/Westmere-EP processor which used the older LGA 1366 package, and uses LGA 2011, LGA 1356 and LGA 1155 socket depending on the package. Overview There are five different families of Xeon processors that were based on Sandy Bridge architecture: * Sandy Bridge-E (LGA 2011) targeted high-end desktop (HEDT) enthusiast segment. It was branded as Core i7 Extreme Edition and Core i7 processors, despite sharing many similarities with Xeon models. * Sandy Bridge-EP (LGA 2011) branded as Xeon E5 models aimed at high-end servers and workstations. It supported motherboards equipped with up to 4 sockets. * Sandy Bridge-EN ( LGA 1356) uses a smaller socket for low-end and dual-processor servers on certain Xeon E5 and Pentium branded models. * Sandy Bri ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

AMD FirePro
AMD FirePro was AMD's brand of graphics cards designed for use in workstations and servers running professional Computer-aided design (CAD), Computer-generated imagery (CGI), Digital content creation (DCC), and High-performance computing/ GPGPU applications. The GPU chips on FirePro-branded graphics cards are identical to the ones used on Radeon-branded graphics cards. The end products (i.e. the graphics card) differentiate substantially by the provided graphics device drivers and through the available professional support for the software. The product line is split into two categories: "W" workstation series focusing on workstation and primarily focusing on graphics and display, and "S" server series focused on virtualization and GPGPU/High-performance computing. The release of the Radeon Pro Duo in April 2016 and the announcement of the Radeon Pro WX Series in July 2016 marked the succession of Radeon Pro as AMD's professional workstation graphics card solution. Radeon ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Nvidia Quadro
Quadro was Nvidia's brand A brand is a name, term, design, symbol or any other feature that distinguishes one seller's good or service from those of other sellers. Brands are used in business, marketing, and advertising for recognition and, importantly, to create a ... for Graphics processing unit, graphics cards intended for use in workstations running professional computer-aided design (CAD), computer-generated imagery (CGI), digital content creation (DCC) applications, scientific calculations and machine learning. Differences between the professional Quadro and mainstream GeForce lines include the use of ECC memory and enhanced floating point precision. These are desirable properties when the cards are used for calculations which, in contrast to graphics rendering, require reliability and precision. The Nvidia Quadro product line directly competed with AMD's Radeon Pro (formerly AMD FirePro, FirePro/FireGL) line of professional workstation cards. Nvidia has moved ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Memory Controller
The memory controller is a digital circuit that manages the flow of data going to and from the computer's main memory. A memory controller can be a separate chip or integrated into another chip, such as being placed on the same die or as an integral part of a microprocessor; in the latter case, it is usually called an integrated memory controller (IMC). A memory controller is sometimes also called a memory chip controller (MCC) or a memory controller unit (MCU). A common form of memory controller is the memory management unit (MMU) which in many operating systems implements virtual addressing. History Most modern desktop or workstation microprocessors use an ''integrated memory controller'' (IMC), including microprocessors from Intel, AMD, and those built around the ARM architecture. Prior to K8 (circa 2003), AMD microprocessors had a memory controller implemented on their motherboard's northbridge. In K8 and later, AMD employed an integrated memory controller. Likewi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

CPU Socket
In computer hardware, a CPU socket or CPU slot contains one or more mechanical components providing mechanical and electrical connections between a microprocessor and a printed circuit board (PCB). This allows for placing and replacing the central processing unit (CPU) without soldering. Common sockets have retention clips that apply a constant force, which must be overcome when a device is inserted. For chips with many pins, zero insertion force (ZIF) sockets are preferred. Common sockets include Pin Grid Array (PGA) or Land Grid Array (LGA). These designs apply a compression force once either a handle (PGA type) or a surface plate (LGA type) is put into place. This provides superior mechanical retention while avoiding the risk of bending pins when inserting the chip into the socket. Certain devices use Ball Grid Array (BGA) sockets, although these require soldering and are generally not considered user replaceable. CPU sockets are used on the motherboard in desktop and ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Thermal Design Power
The thermal design power (TDP), sometimes called thermal design point, is the maximum amount of heat generated by a computer chip or component (often a CPU, GPU or system on a chip) that the cooling system in a computer is designed to dissipate under any workload. Some sources state that the peak power rating for a microprocessor is usually 1.5 times the TDP rating. Intel has introduced a new metric called ''scenario design power'' (SDP) for some Ivy Bridge Y-series processors. Calculation The ''average CPU power'' (ACP) is the power consumption of central processing units, especially server processors, under "average" daily usage as defined by Advanced Micro Devices (AMD) for use in its line of processors based on the K10 microarchitecture ( Opteron 8300 and 2300 series processors). Intel's thermal design power (TDP), used for Pentium and Core 2 processors, measures the energy consumption under high workload; it is numerically somewhat higher than the "average" AC ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]