HOME
*





Link Distance
In computational geometry Computational geometry is a branch of computer science devoted to the study of algorithms which can be stated in terms of geometry. Some purely geometrical problems arise out of the study of computational geometric algorithms, and such problems ar ..., the link distance between two points in a polygon is the minimum number of line segments of any polygonal chain within the polygon that has the two points as its endpoints. The link diameter of the polygon is the maximum link distance of any two of its points. A polygon is a convex polygon if and only if its link diameter is one. Every star-shaped polygon has link diameter at most two: every two points may be connected by a polygonal chain that bends once, inside the kernel of the polygon. However, this property does not characterize star-shaped polygons, as there also exist polygons with holes in which the link diameter is two. References *. Computational geometry {{geometry-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Computational Geometry
Computational geometry is a branch of computer science devoted to the study of algorithms which can be stated in terms of geometry. Some purely geometrical problems arise out of the study of computational geometric algorithms, and such problems are also considered to be part of computational geometry. While modern computational geometry is a recent development, it is one of the oldest fields of computing with a history stretching back to antiquity. Computational complexity is central to computational geometry, with great practical significance if algorithms are used on very large datasets containing tens or hundreds of millions of points. For such sets, the difference between O(''n''2) and O(''n'' log ''n'') may be the difference between days and seconds of computation. The main impetus for the development of computational geometry as a discipline was progress in computer graphics and computer-aided design and manufacturing (CAD/CAM), but many problems in computational geometry ar ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Polygon
In geometry, a polygon () is a plane figure that is described by a finite number of straight line segments connected to form a closed '' polygonal chain'' (or ''polygonal circuit''). The bounded plane region, the bounding circuit, or the two together, may be called a polygon. The segments of a polygonal circuit are called its ''edges'' or ''sides''. The points where two edges meet are the polygon's '' vertices'' (singular: vertex) or ''corners''. The interior of a solid polygon is sometimes called its ''body''. An ''n''-gon is a polygon with ''n'' sides; for example, a triangle is a 3-gon. A simple polygon is one which does not intersect itself. Mathematicians are often concerned only with the bounding polygonal chains of simple polygons and they often define a polygon accordingly. A polygonal boundary may be allowed to cross over itself, creating star polygons and other self-intersecting polygons. A polygon is a 2-dimensional example of the more general polytope in any nu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Polygonal Chain
In geometry, a polygonal chain is a connected series of line segments. More formally, a polygonal chain is a curve specified by a sequence of points (A_1, A_2, \dots, A_n) called its vertices. The curve itself consists of the line segments connecting the consecutive vertices. Name A polygonal chain may also be called a polygonal curve, polygonal path, polyline,. piecewise linear curve, broken line or, in geographic information systems, a linestring or linear ring. Variations A simple polygonal chain is one in which only consecutive (or the first and the last) segments intersect and only at their endpoints. A closed polygonal chain is one in which the first vertex coincides with the last one, or, alternatively, the first and the last vertices are also connected by a line segment. A simple closed polygonal chain in the plane is the boundary of a simple polygon. Often the term "polygon" is used in the meaning of "closed polygonal chain", but in some cases it is important to ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Convex Polygon
In geometry, a convex polygon is a polygon that is the boundary of a convex set. This means that the line segment between two points of the polygon is contained in the union of the interior and the boundary of the polygon. In particular, it is a simple polygon (not self-intersecting). Equivalently, a polygon is convex if every line that does not contain any edge intersects the polygon in at most two points. A strictly convex polygon is a convex polygon such that no line contains two of its edges. In a convex polygon, all interior angles are less than or equal to 180 degrees, while in a strictly convex polygon all interior angles are strictly less than 180 degrees. Properties The following properties of a simple polygon are all equivalent to convexity: *Every internal angle is strictly less than 180 degrees. *Every point on every line segment between two points inside or on the boundary of the polygon remains inside or on the boundary. *The polygon is entirely contained in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Star-shaped Polygon
In geometry, a star-shaped polygon is a polygonal region in the plane that is a star domain, that is, a polygon that contains a point from which the entire polygon boundary is visible. Formally, a polygon is star-shaped if there exists a point such that for each point of the segment lies entirely within . The set of all points with this property (that is, the set of points from which all of is visible) is called the kernel of . If a star-shaped polygon is convex, the link distance between any two of its points (the minimum number of sequential line segments sufficient to connect those points) is 1, and so the polygon's link diameter (the maximum link distance over all pairs of points) is 1. If a star-shaped polygon is not convex, the link distance between a point in the kernel and any other point in the polygon is 1, while the link distance between any two points that are in the polygon but outside the kernel is either 1 or 2; in this case the maximum link distance is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]