HOME





Likelihood Principle
In statistics, the likelihood principle is the proposition that, given a statistical model, all the evidence in a sample relevant to model parameters is contained in the likelihood function. A likelihood function arises from a probability density function considered as a function of its distributional parameterization argument. For example, consider a model which gives the probability density function \; f_X(x \mid \theta)\; of observable random variable \, X \, as a function of a parameter \,\theta~. Then for a specific value \,x\, of \,X~, the function \,\mathcal(\theta \mid x) = f_X(x \mid \theta)\; is a likelihood function of \,\theta~: it gives a measure of how "likely" any particular value of \,\theta\, is, if we know that \,X\, has the value \,x~. The density function may be a density with respect to counting measure, i.e. a probability mass function. Two likelihood functions are ''equivalent'' if one is a scalar multiple of the other. The likelihood princip ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Statistics
Statistics (from German language, German: ', "description of a State (polity), state, a country") is the discipline that concerns the collection, organization, analysis, interpretation, and presentation of data. In applying statistics to a scientific, industrial, or social problem, it is conventional to begin with a statistical population or a statistical model to be studied. Populations can be diverse groups of people or objects such as "all people living in a country" or "every atom composing a crystal". Statistics deals with every aspect of data, including the planning of data collection in terms of the design of statistical survey, surveys and experimental design, experiments. When census data (comprising every member of the target population) cannot be collected, statisticians collect data by developing specific experiment designs and survey sample (statistics), samples. Representative sampling assures that inferences and conclusions can reasonably extend from the sample ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Bayes Factor
The Bayes factor is a ratio of two competing statistical models represented by their evidence, and is used to quantify the support for one model over the other. The models in question can have a common set of parameters, such as a null hypothesis and an alternative, but this is not necessary; for instance, it could also be a non-linear model compared to its linear approximation. The Bayes factor can be thought of as a Bayesian analog to the likelihood-ratio test, although it uses the integrated (i.e., marginal) likelihood rather than the maximized likelihood. As such, both quantities only coincide under simple hypotheses (e.g., two specific parameter values). Also, in contrast with null hypothesis significance testing, Bayes factors support evaluation of evidence ''in favor'' of a null hypothesis, rather than only allowing the null to be rejected or not rejected. Although conceptually simple, the computation of the Bayes factor can be challenging depending on the complexity of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Philosophy Of Science
Philosophy of science is the branch of philosophy concerned with the foundations, methods, and implications of science. Amongst its central questions are the difference between science and non-science, the reliability of scientific theories, and the ultimate purpose and meaning of science as a human endeavour. Philosophy of science focuses on metaphysical, epistemic and semantic aspects of scientific practice, and overlaps with metaphysics, ontology, logic, and epistemology, for example, when it explores the relationship between science and the concept of truth. Philosophy of science is both a theoretical and empirical discipline, relying on philosophical theorising as well as meta-studies of scientific practice. Ethical issues such as bioethics and scientific misconduct are often considered ethics or science studies rather than the philosophy of science. Many of the central problems concerned with the philosophy of science lack contemporary consensus, including whether ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Anthony William Fairbank Edwards
Anthony William Fairbank Edwards, FRS One or more of the preceding sentences incorporates text from the royalsociety.org website where: (born 1935) is a British statistician, geneticist and evolutionary biologist. Edwards is regarded as one of Britain's most distinguished geneticists, and as one of the most influential mathematical geneticists in the history. He is the son of the surgeon Harold C. Edwards, and brother of medical geneticist John H. Edwards. Edwards has sometimes been called "Fisher's Edwards" to distinguish him from his brother, because he was mentored by Ronald Fisher. He has always had a high regard for Fisher's scientific contributions and has written extensively on them. To mark the Fisher centenary in 1990, Edwards proposed a commemorative Sir Ronald Fisher window be installed in the Dining Hall of Gonville & Caius College. When the window was removed in 2020, he vigorously opposed the move. In 1963 and 1964, Edwards, along with Luigi Luca Cavalli-Sforz ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Ian Hacking
Ian MacDougall Hacking (February 18, 1936 – May 10, 2023) was a Canadian philosopher specializing in the philosophy of science. Throughout his career, he won numerous awards, such as the Killam Prize for the Humanities and the Balzan Prize, and was a member of many prestigious groups, including the Order of Canada, the Royal Society of Canada and the British Academy. Life and career Born in Vancouver, British Columbia, he earned undergraduate degrees from the University of British Columbia (1956) and the University of Cambridge (1958), where he was a student at Trinity College, Cambridge, Trinity College. Hacking also earned his PhD at Cambridge (1962) under the direction of Casimir Lewy, a former student of G. E. Moore. Hacking started his teaching career as an instructor at Princeton University in 1960 but, after just one year, moved to the University of Virginia as an assistant professor. After working as a research fellow at Peterhouse, Cambridge from 1962 to 1964, he ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Ronald A
Ronald is a masculine given name derived from the Old Norse ''Rögnvaldr'', Hanks; Hardcastle; Hodges (2006) p. 234; Hanks; Hodges (2003) § Ronald. or possibly from Old English '' Regenweald''. In some cases ''Ronald'' is an Anglicised form of the Gaelic '' Raghnall'', a name likewise derived from ''Rögnvaldr''. The latter name is composed of the Old Norse elements ''regin'' ("advice", "decision") and ''valdr'' ("ruler"). ''Ronald'' was originally used in England and Scotland, where Scandinavian influences were once substantial, although now the name is common throughout the English-speaking world. A short form of ''Ronald'' is ''Ron''. Pet forms of ''Ronald'' include ''Roni'' and '' Ronnie''. ''Ronalda'' and ''Rhonda'' are feminine forms of ''Ronald''. ''Rhona'', a modern name apparently only dating back to the late nineteenth century, may have originated as a feminine form of ''Ronald''. Hanks; Hardcastle; Hodges (2006) pp. 230, 408; Hanks; Hodges (2003) § Rhona. The names ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Allan Birnbaum
Allan Birnbaum (May 27, 1923 – July 1, 1976) was an American statistician who contributed to statistical inference, foundations of statistics, statistical genetics, statistical psychology, and history of statistics. Life and career Birnbaum was born in San Francisco. His parents were Russian-born Orthodox Jews. He studied mathematics at the University of California, Berkeley, doing a premedical programme at the same time. After taking a bachelor's degree in mathematics in 1945, he spent two years doing graduate courses in science, mathematics and philosophy, planning perhaps a career in the philosophy of science. One of his philosophy teachers, Hans Reichenbach, suggested he combine philosophy with science. He went to Columbia University to do a PhD with Abraham Wald but, when Wald died in a plane crash, Birnbaum asked Erich Leo Lehmann, who was visiting Columbia to take him on. Birnbaum's thesis and his early work was very much in the spirit of Lehmann's classic text ''Testing S ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Maximum Likelihood
In statistics, maximum likelihood estimation (MLE) is a method of estimating the parameters of an assumed probability distribution, given some observed data. This is achieved by maximizing a likelihood function so that, under the assumed statistical model, the observed data is most probable. The point in the parameter space that maximizes the likelihood function is called the maximum likelihood estimate. The logic of maximum likelihood is both intuitive and flexible, and as such the method has become a dominant means of statistical inference. If the likelihood function is differentiable, the derivative test for finding maxima can be applied. In some cases, the first-order conditions of the likelihood function can be solved analytically; for instance, the ordinary least squares estimator for a linear regression model maximizes the likelihood when the random errors are assumed to have normal distributions with the same variance. From the perspective of Bayesian inference, ML ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Significance Level
In statistical hypothesis testing, a result has statistical significance when a result at least as "extreme" would be very infrequent if the null hypothesis were true. More precisely, a study's defined significance level, denoted by \alpha, is the probability of the study rejecting the null hypothesis, given that the null hypothesis is true; and the ''p''-value of a result, ''p'', is the probability of obtaining a result at least as extreme, given that the null hypothesis is true. The result is said to be ''statistically significant'', by the standards of the study, when p \le \alpha. The significance level for a study is chosen before data collection, and is typically set to 5% or much lower—depending on the field of study. In any experiment or observation that involves drawing a sample from a population, there is always the possibility that an observed effect would have occurred due to sampling error alone. But if the ''p''-value of an observed effect is less than (or equal to ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Simple Hypothesis
A statistical hypothesis test is a method of statistical inference used to decide whether the data provide sufficient evidence to reject a particular hypothesis. A statistical hypothesis test typically involves a calculation of a test statistic. Then a decision is made, either by comparing the test statistic to a critical value or equivalently by evaluating a ''p''-value computed from the test statistic. Roughly 100 specialized statistical tests are in use and noteworthy. History While hypothesis testing was popularized early in the 20th century, early forms were used in the 1700s. The first use is credited to John Arbuthnot (1710), followed by Pierre-Simon Laplace (1770s), in analyzing the human sex ratio at birth; see . Choice of null hypothesis Paul Meehl has argued that the epistemological importance of the choice of null hypothesis has gone largely unacknowledged. When the null hypothesis is predicted by theory, a more precise experiment will be a more severe test of th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Statistical Power
In frequentist statistics, power is the probability of detecting a given effect (if that effect actually exists) using a given test in a given context. In typical use, it is a function of the specific test that is used (including the choice of test statistic and significance level), the sample size (more data tends to provide more power), and the effect size (effects or correlations that are large relative to the variability of the data tend to provide more power). More formally, in the case of a simple hypothesis test with two hypotheses, the power of the test is the probability that the test correctly rejects the null hypothesis (H_0) when the alternative hypothesis (H_1) is true. It is commonly denoted by 1-\beta, where \beta is the probability of making a type II error (a false negative) conditional on there being a true effect or association. Background Statistical testing uses data from samples to assess, or make inferences about, a statistical population. Fo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Neyman–Pearson Lemma
In statistics, the Neyman–Pearson lemma describes the existence and uniqueness of the likelihood ratio as a uniformly most powerful test in certain contexts. It was introduced by Jerzy Neyman and Egon Pearson in a paper in 1933. The Neyman–Pearson lemma is part of the Neyman–Pearson theory of statistical testing, which introduced concepts such as errors of the second kind, power function, and inductive behavior.The Fisher, Neyman–Pearson Theories of Testing Hypotheses: One Theory or Two?: Journal of the American Statistical Association: Vol 88, No 424The Fisher, Neyman–Pearson Theories of Testing Hypotheses: One Theory or Two?: Journal of the American Statistical Association: Vol 88, No 424/ref>Wald: Chapter II: The Neyman–Pearson Theory of Testing a Statistical HypothesisWald: Chapter II: The Neyman–Pearson Theory of Testing a Statistical Hypothesis/ref>The Empire of ChanceThe Empire of Chance/ref> The previous Fisherian theory of significance testing postulated only ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]