HOME



picture info

Lebesgue Integrable
In mathematics, the integral of a non-negative Function (mathematics), function of a single variable can be regarded, in the simplest case, as the area between the Graph of a function, graph of that function and the axis. The Lebesgue integral, named after france, French mathematician Henri Lebesgue, is one way to make this concept rigorous and to extend it to more general functions. The Lebesgue integral is more general than the Riemann integral, which it largely replaced in mathematical analysis since the first half of the 20th century. It can accommodate functions with discontinuities arising in many applications that are pathological from the perspective of the Riemann integral. The Lebesgue integral also has generally better analytical properties. For instance, under mild conditions, it is possible to exchange limits and Lebesgue integration, while the conditions for doing this with a Riemann integral are comparatively baroque. Furthermore, the Lebesgue integral can be ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Polynomials
In mathematics, a polynomial is a mathematical expression consisting of indeterminates (also called variables) and coefficients, that involves only the operations of addition, subtraction, multiplication and exponentiation to nonnegative integer powers, and has a finite number of terms. An example of a polynomial of a single indeterminate is . An example with three indeterminates is . Polynomials appear in many areas of mathematics and science. For example, they are used to form polynomial equations, which encode a wide range of problems, from elementary word problems to complicated scientific problems; they are used to define polynomial functions, which appear in settings ranging from basic chemistry and physics to economics and social science; and they are used in calculus and numerical analysis to approximate other functions. In advanced mathematics, polynomials are used to construct polynomial rings and algebraic varieties, which are central concepts in algebra and a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Riemann Vs Lebesgue Integration Of Serbian Covid Case Data
Georg Friedrich Bernhard Riemann (; ; 17September 182620July 1866) was a German mathematician who made profound contributions to analysis, number theory, and differential geometry. In the field of real analysis, he is mostly known for the first rigorous formulation of the integral, the Riemann integral, and his work on Fourier series. His contributions to complex analysis include most notably the introduction of Riemann surfaces, breaking new ground in a natural, geometric treatment of complex analysis. His 1859 paper on the prime-counting function, containing the original statement of the Riemann hypothesis, is regarded as a foundational paper of analytic number theory. Through his pioneering contributions to differential geometry, Riemann laid the foundations of the mathematics of general relativity. He is considered by many to be one of the greatest mathematicians of all time. Early years Riemann was born on 17 September 1826 in Breselenz, a village near Dannenberg in the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Via Improper Riemann Integral
Via or VIA may refer to the following: Arts and entertainment * ''Via'' (Volumes album), 2011 * Via (Thalia Zedek album), 2013 * VIA (music), Soviet and Russian term for a music collective Businesses and organisations * Via Foundation, a Czech charitable foundation * VIA Programs (Volunteers In Asia), an American non-profit organization * VIA Technologies, a Taiwanese manufacturer of electronics * VIA University College, a Danish university college * VIA Vancouver Institute for the Americas, a Canadian education organization * Volunteers in Africa Foundation, an American non-profit organization *VIA, stock ticker for: **Viacom (1952–2006) ** Viacom (2005–2019) * Vià, a French television network Transportation * VIA Metropolitan Transit, in San Antonio, Texas, U.S. * Via Rail, rail operator in Canada * Via Transportation, a global transportation technology company * Air VIA, a former Bulgarian airline * VIA Airways, a Bulgarian airline, now Fly2Sky Airlines ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Horizontal Slice For Lebesgue
Horizontal may refer to: *Horizontal plane, in astronomy, geography, geometry and other sciences and contexts *Horizontal coordinate system, in astronomy *Horizontalism, in monetary circuit theory *Horizontalism, in sociology *Horizontal market, in microeconomics * ''Horizontal'' (album), a 1968 album by the Bee Gees ** "Horizontal" (song)" is a 1968 song by the Bee Gees See also *Horizontal and vertical * Horizontal and vertical (other) * Horizontal fissure (other), anatomical features *Horizontal bar The horizontal bar, also known as the high bar, is an apparatus used by male gymnasts in artistic gymnastics. It traditionally consists of a cylindrical metal (typically steel) bar that is rigidly held above and parallel to the floor by a syst ..., an apparatus used by male gymnasts in artistic gymnastics * Vertical (other) * {{disambiguation ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Pathological (mathematics)
In mathematics, when a mathematical phenomenon runs counter to some intuition, then the phenomenon is sometimes called pathological. On the other hand, if a phenomenon does not run counter to intuition, it is sometimes called well-behaved or nice. These terms are sometimes useful in mathematical research and teaching, but there is no strict mathematical definition of pathological or well-behaved. In analysis A classic example of a pathology is the Weierstrass function, a function that is continuous everywhere but differentiable nowhere. The sum of a differentiable function and the Weierstrass function is again continuous but nowhere differentiable; so there are at least as many such functions as differentiable functions. In fact, using the Baire category theorem, one can show that continuous functions are generically nowhere differentiable. Such examples were deemed pathological when they were first discovered. To quote Henri Poincaré: Since Poincaré, nowhere differe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Paul Montel
Paul Antoine Aristide Montel (29 April 1876 – 22 January 1975) was a French mathematician. He was born in Nice, France and died in Paris, France. He researched mostly on holomorphic functions in complex analysis. Montel was a student of Émile Borel at the Sorbonne. Henri Cartan, Jean Dieudonné and Miron Nicolescu were among his students. Montel's most important contribution to mathematics was the introduction and systematic development of the notion of normal family. This very influential book also contains the first exposition in the book form of the results of Pierre Fatou and Gaston Julia on holomorphic dynamics. The notion of normal family was a predecessor of the notion of compact space introduced by Pavel Alexandrov Pavel Sergeyevich Alexandrov (), sometimes romanized ''Paul Alexandroff'' (7 May 1896 – 16 November 1982), was a Soviet mathematician. He wrote roughly three hundred papers, making important contributions to set theory and topology. In topol ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Rational Number
In mathematics, a rational number is a number that can be expressed as the quotient or fraction of two integers, a numerator and a non-zero denominator . For example, is a rational number, as is every integer (for example, The set of all rational numbers is often referred to as "the rationals", and is closed under addition, subtraction, multiplication, and division by a nonzero rational number. It is a field under these operations and therefore also called the field of rationals or the field of rational numbers. It is usually denoted by boldface , or blackboard bold A rational number is a real number. The real numbers that are rational are those whose decimal expansion either terminates after a finite number of digits (example: ), or eventually begins to repeat the same finite sequence of digits over and over (example: ). This statement is true not only in base 10, but also in every other integer base, such as the binary and hexadecimal ones (see ). A real n ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Dominated Convergence Theorem
In measure theory, Lebesgue's dominated convergence theorem gives a mild sufficient condition under which limits and integrals of a sequence of functions can be interchanged. More technically it says that if a sequence of functions is bounded in absolute value by an integrable function and is almost everywhere pointwise convergent to a function then the sequence converges in L_1 to its pointwise limit, and in particular the integral of the limit is the limit of the integrals. Its power and utility are two of the primary theoretical advantages of Lebesgue integration over Riemann integration. In addition to its frequent appearance in mathematical analysis and partial differential equations, it is widely used in probability theory, since it gives a sufficient condition for the convergence of expected values of random variables. Statement Lebesgue's dominated convergence theorem. Let (f_n) be a sequence of complex-valued measurable functions on a measure space . Suppose that t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Monotone Convergence Theorem
In the mathematical field of real analysis, the monotone convergence theorem is any of a number of related theorems proving the good convergence behaviour of monotonic sequences, i.e. sequences that are non- increasing, or non- decreasing. In its simplest form, it says that a non-decreasing bounded-above sequence of real numbers a_1 \le a_2 \le a_3 \le ...\le K converges to its smallest upper bound, its supremum. Likewise, a non-increasing bounded-below sequence converges to its largest lower bound, its infimum. In particular, infinite sums of non-negative numbers converge to the supremum of the partial sums if and only if the partial sums are bounded. For sums of non-negative increasing sequences 0 \le a_ \le a_ \le \cdots , it says that taking the sum and the supremum can be interchanged. In more advanced mathematics the monotone convergence theorem usually refers to a fundamental result in measure theory due to Lebesgue and Beppo Levi that says that for sequences of non ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Fourier Transform
In mathematics, the Fourier transform (FT) is an integral transform that takes a function as input then outputs another function that describes the extent to which various frequencies are present in the original function. The output of the transform is a complex-valued function of frequency. The term ''Fourier transform'' refers to both this complex-valued function and the mathematical operation. When a distinction needs to be made, the output of the operation is sometimes called the frequency domain representation of the original function. The Fourier transform is analogous to decomposing the sound of a musical chord into the intensities of its constituent pitches. Functions that are localized in the time domain have Fourier transforms that are spread out across the frequency domain and vice versa, a phenomenon known as the uncertainty principle. The critical case for this principle is the Gaussian function, of substantial importance in probability theory and statist ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Fourier Series
A Fourier series () is an Series expansion, expansion of a periodic function into a sum of trigonometric functions. The Fourier series is an example of a trigonometric series. By expressing a function as a sum of sines and cosines, many problems involving the function become easier to analyze because trigonometric functions are well understood. For example, Fourier series were first used by Joseph Fourier to find solutions to the heat equation. This application is possible because the derivatives of trigonometric functions fall into simple patterns. Fourier series cannot be used to approximate arbitrary functions, because most functions have infinitely many terms in their Fourier series, and the series do not always Convergent series, converge. Well-behaved functions, for example Smoothness, smooth functions, have Fourier series that converge to the original function. The coefficients of the Fourier series are determined by integrals of the function multiplied by trigonometric func ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]