Lagrangian Ocean Analysis
Lagrangian ocean analysis is a way of analysing ocean dynamics by computing the trajectories of virtual fluid particles, following the Lagrangian perspective of fluid flow, from a specified velocity field. Often, the Eulerian velocity field used as an input for Lagrangian ocean analysis has been computed using an ocean general circulation model (OGCM). Lagrangian techniques can be employed on a range of scales, from modelling the dispersal of biological matter within the Great Barrier Reef to global scales.What is ARIANE? Retrieved 2021-05-18. Lagrangian ocean analysis has numerous applications, from modelling the diffusion of tracers, through the dispersal of aircraft debris and plastics, to determining the biological connectivity of ocean reg ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Ocean General Circulation Model
Ocean general circulation models (OGCMs) are a particular kind of general circulation model to describe physical and thermodynamical processes in oceans. The oceanic general circulation is defined as the horizontal space scale and time scale larger than mesoscale (of order 100 km and 6 months). They depict oceans using a three-dimensional grid that include active thermodynamics and hence are most directly applicable to climate studies. They are the most advanced tools currently available for simulating the response of the global ocean system to increasing greenhouse gas concentrations. A hierarchy of OGCMs have been developed that include varying degrees of spatial coverage, resolution, geographical realism, process detail, etc. History The first generation of OGCMs assumed “rigid lid” to eliminate high-speed external gravity waves. According to CFL criteria without those fast waves, we can use a bigger time step, which is not so computationally expensive. But it also filt ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Flux
Flux describes any effect that appears to pass or travel (whether it actually moves or not) through a surface or substance. Flux is a concept in applied mathematics and vector calculus which has many applications to physics. For transport phenomena, flux is a vector quantity, describing the magnitude and direction of the flow of a substance or property. In vector calculus flux is a scalar quantity, defined as the surface integral of the perpendicular component of a vector field over a surface. Terminology The word ''flux'' comes from Latin: ''fluxus'' means "flow", and ''fluere'' is "to flow". As '' fluxion'', this term was introduced into differential calculus by Isaac Newton. The concept of heat flux was a key contribution of Joseph Fourier, in the analysis of heat transfer phenomena. His seminal treatise ''Théorie analytique de la chaleur'' (''The Analytical Theory of Heat''), defines ''fluxion'' as a central quantity and proceeds to derive the now well-known ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Lagrangian Analysis
Lagrangian analysis is the use of Lagrangian coordinates to analyze various problems in continuum mechanics. Lagrangian analysis may be used to analyze currents and flows of various materials by analyzing data collected from gauges/sensors embedded in the material which freely move with the motion of the material. A common application is study of ocean currents in oceanography Oceanography (), also known as oceanology and ocean science, is the scientific study of the oceans. It is an Earth science, which covers a wide range of topics, including ecosystem dynamics; ocean currents, waves, and geophysical fluid dynamic ..., where the movable gauges in question called Lagrangian drifters. Recently, with the development of high speed cameras and particle-tracking algorithms, there have also been applications to measuring turbulence.Small-scale anisotropy in Lagrangian turbulence by Nicholas T Ouellette et al 2006 New J. Phys. 8 102 References {{reflist Fluid dynamics ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Venn LOA
Venn is a surname and a given name. It may refer to: Given name * Venn Eyre (died 1777), Archdeacon of Carlisle, Cumbria, England * Venn Pilcher (1879–1961), Anglican bishop, writer, and translator of hymns * Venn Young (1929–1993), New Zealand politician Surname * Albert Venn (1867–1908), American lacrosse player * Anne Venn (1620s–1654), English religious radical and diarist * Blair Venn, Australian actor * Charles Venn (born 1973), British actor * Harry Venn (1844–1908), Australian politician * Henry Venn (Church Missionary Society) the younger (1796-1873), secretary of the Church Missionary Society, grandson of Henry Venn * Henry Venn (Clapham Sect) the elder (1725–1797), English evangelical minister * Horace Venn (1892–1953), English cricketer * John Venn (1834–1923), British logician and the inventor of Venn diagrams, son of Henry Venn the younger * John Venn (academic) (died 1687), English academic administrator * John Venn (politician) (1586–1650), Engli ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Malaysia Airlines Flight 370
Malaysia Airlines Flight 370 (MH370/MAS370) was an international passenger flight operated by Malaysia Airlines that disappeared on 8 March 2014 while flying from Kuala Lumpur International Airport in Malaysia to its planned destination, Beijing Capital International Airport. The crew of the Boeing 777-200ER registered as 9M-MRO, last communicated with air traffic control (ATC) around 38 minutes after takeoff when the flight was over the South China Sea. The aircraft was lost from ATC radar screens minutes later, but was tracked by military radar for another hour, deviating westward from its planned flight path, crossing the Malay Peninsula and Andaman Sea. It left radar range northwest of Penang Island in northwestern Peninsular Malaysia. With all 227 passengers and 12 crew aboard presumed dead, the disappearance of Flight 370 was the deadliest incident involving a Boeing 777 and the deadliest in Malaysia Airlines' history until it was surpassed i ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Deepwater Horizon Oil Spill
The ''Deepwater Horizon'' oil spill (also referred to as the "BP oil spill") was an industrial disaster that began on 20 April 2010 off of the coast of the United States in the Gulf of Mexico on the BP-operated Macondo Prospect, considered to be the largest marine oil spill in the history of the petroleum industry and estimated to be 8 to 31 percent larger in volume than the previous largest, the Ixtoc I oil spill, also in the Gulf of Mexico. The Federal government of the United States, United States federal government estimated the total discharge at . After Efforts to stem the Deepwater Horizon oil spill, several failed efforts to contain the flow, the well was declared sealed on 19 September 2010. Reports in early 2012 indicated that the well site was still leaking. The ''Deepwater Horizon'' oil spill is regarded as one of the largest Environmental disaster, environmental disasters in world history. A massive response ensued to protect beaches, salt marsh, wetlands and Es ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Subantarctic Mode Water
Sub-Antarctic Mode Water (SAMW) is an important water mass in Earth's oceans. It is formed near the Sub-Antarctic Front on the northern flank of the Antarctic Circumpolar Current. The surface density of Sub-Antarctic Mode Water ranges between about 1026.0 and 1027.0 kg/m3, and the core of this water mass is often identified as a region of particularly low stratification. Another important facet of SAMW is that silicate (an important nutrient for diatoms) is depleted relative to nitrate. This depletion can be tracked over much of the globe, suggesting that SAMW helps set the blend of nutrients delivered to low-latitude ocean ecosystems and thus determines the balance of species within these ecosystems. SAMW is a very homogeneous layer that forms north of the Sub-Antarctic Front and is also referred to as a pycnostad. Its uniformity can be attributed to convective overturning that also serves to ventilate it, resulting in the high dissolved oxygen value of >6mL/L. It has sl ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Water Mass
An oceanographic water mass is an identifiable body of water with a common formation history which has physical properties distinct from surrounding water. Properties include temperature, salinity, chemical - isotopic ratios, and other physical quantities which are conservative flow tracers. Water mass is also identified by its non-conservative flow tracers such as silicate, nitrate, oxygen, and phosphate. Water masses are generally distinguished not only by their respective tracers but also by their location in the Worlds' oceans. Water masses are also distinguished by their vertical position so that there are surface water masses, intermediate water masses and deep water masses. Global water masses Common water masses in the world ocean are: * Antarctic Bottom Water (AABW): Antarctic Bottom Water is a very important water mass. Antarctic Bottom Water is the left over part when sea ice is being made. It is very cold but, not quite freezing so the water moves down and alon ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Markov Chain
A Markov chain or Markov process is a stochastic model describing a sequence of possible events in which the probability of each event depends only on the state attained in the previous event. Informally, this may be thought of as, "What happens next depends only on the state of affairs ''now''." A countably infinite sequence, in which the chain moves state at discrete time steps, gives a discrete-time Markov chain (DTMC). A continuous-time process is called a continuous-time Markov chain (CTMC). It is named after the Russian mathematician Andrey Markov. Markov chains have many applications as statistical models of real-world processes, such as studying cruise control systems in motor vehicles, queues or lines of customers arriving at an airport, currency exchange rates and animal population dynamics. Markov processes are the basis for general stochastic simulation methods known as Markov chain Monte Carlo, which are used for simulating sampling from complex probability ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Stochastic Differential Equation
A stochastic differential equation (SDE) is a differential equation in which one or more of the terms is a stochastic process, resulting in a solution which is also a stochastic process. SDEs are used to model various phenomena such as stock prices or physical systems subject to thermal fluctuations. Typically, SDEs contain a variable which represents random white noise calculated as the derivative of Brownian motion or the Wiener process. However, other types of random behaviour are possible, such as jump processes. Random differential equations are conjugate to stochastic differential equations. Background Stochastic differential equations originated in the theory of Brownian motion, in the work of Albert Einstein and Smoluchowski. These early examples were linear stochastic differential equations, also called 'Langevin' equations after French physicist Langevin, describing the motion of a harmonic oscillator subject to a random force. The mathematical theory of stoc ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Stochastic
Stochastic (, ) refers to the property of being well described by a random probability distribution. Although stochasticity and randomness are distinct in that the former refers to a modeling approach and the latter refers to phenomena themselves, these two terms are often used synonymously. Furthermore, in probability theory, the formal concept of a '' stochastic process'' is also referred to as a ''random process''. Stochasticity is used in many different fields, including the natural sciences such as biology, chemistry, ecology, neuroscience, and physics, as well as technology and engineering fields such as image processing, signal processing, information theory, computer science, cryptography, and telecommunications. It is also used in finance, due to seemingly random changes in financial markets as well as in medicine, linguistics, music, media, colour theory, botany, manufacturing, and geomorphology. Etymology The word ''stochastic'' in English was originally used as ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Piecewise
In mathematics, a piecewise-defined function (also called a piecewise function, a hybrid function, or definition by cases) is a function defined by multiple sub-functions, where each sub-function applies to a different interval in the domain. Piecewise definition is actually a way of expressing the function, rather than a characteristic of the function itself. A distinct, but related notion is that of a property holding piecewise for a function, used when the domain can be divided into intervals on which the property holds. Unlike for the notion above, this is actually a property of the function itself. A piecewise linear function (which happens to be also continuous) is depicted as an example. Notation and interpretation Piecewise functions can be defined using the common functional notation, where the body of the function is an array of functions and associated subdomains. These subdomains together must cover the whole domain; often it is also required that they are p ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |