KRT31
Keratin, type I cuticular Ha1 is a protein that in humans is encoded by the ''KRT31'' gene. Function The protein encoded by this gene is a member of the keratin gene family. As a Type I hair keratin, it is an acidic protein which heterodimerizes with type II keratins to form hair and nails. The type I hair keratins are clustered in a region of chromosome 17 Chromosome 17 is one of the 23 pairs of chromosomes in humans. People normally have two copies of this chromosome. Chromosome 17 spans more than 84 million base pairs (the building material of DNA) and represents between 2.5 and 3% of the total DN ...q21.2 and have the same direction of transcription. References Further reading * * * * * * * * * * {{gene-17-stub ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Hair Keratin
Hair keratin is a type of keratin found in hair and the nails. Function Originating from the embryonic epidermis, the hair follicle evolves into one of the most complex structures in the human body, comprising 7–8 distinct tissue sections. The base of the hair follicle contains the bulb, housing dermal fibroblasts known as the dermal papilla, crucial for morphogenesis and the hair follicle's cyclic activity. Encircling these cells is the matrix cell region, the hair follicle's proliferative compartment, responsible for the formation of different follicle compartments (except the ORS) and the production of crucial structural elements of hair - hair keratins and associated proteins known as KAPs. Keratin is a crucial fibrous protein found in animals, constituting tough structures like hair, feathers, nails, and horns. It's classified based on tissue origin and sulfur content: soft keratins have lower sulfur, while hard keratins, found in hair and claws, contain more sulfur, ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Protein
Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residue (biochemistry), residues. Proteins perform a vast array of functions within organisms, including Enzyme catalysis, catalysing metabolic reactions, DNA replication, Cell signaling, responding to stimuli, providing Cytoskeleton, structure to cells and Fibrous protein, organisms, and Intracellular transport, transporting molecules from one location to another. Proteins differ from one another primarily in their sequence of amino acids, which is dictated by the Nucleic acid sequence, nucleotide sequence of their genes, and which usually results in protein folding into a specific Protein structure, 3D structure that determines its activity. A linear chain of amino acid residues is called a polypeptide. A protein contains at least one long polypeptide. Short polypeptides, containing less than 20–30 residues, are rarely considered to be proteins and are commonly called pep ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Gene
In biology, the word gene has two meanings. The Mendelian gene is a basic unit of heredity. The molecular gene is a sequence of nucleotides in DNA that is transcribed to produce a functional RNA. There are two types of molecular genes: protein-coding genes and non-coding genes. During gene expression (the synthesis of Gene product, RNA or protein from a gene), DNA is first transcription (biology), copied into RNA. RNA can be non-coding RNA, directly functional or be the intermediate protein biosynthesis, template for the synthesis of a protein. The transmission of genes to an organism's offspring, is the basis of the inheritance of phenotypic traits from one generation to the next. These genes make up different DNA sequences, together called a genotype, that is specific to every given individual, within the gene pool of the population (biology), population of a given species. The genotype, along with environmental and developmental factors, ultimately determines the phenotype ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Type I Keratin
Type I keratins (or Type I cytokeratins) are cytokeratins that constitute the Type I intermediate filaments (IFs) of the intracytoplasmatic cytoskeleton, which is present in all mammalian epithelial cells. Most of the type I keratins consist of acidic, low molecular weight proteins which in vivo are arranged in pairs of heterotypic Type I and Type II keratin chains, coexpressed during differentiation of simple and stratified epithelial tissues. Type I keratins are encoded on chromosome 17q and encompasses: K9, K10, K11, K12, K13, K14, K15, K16, K17, K18, K19 and K20. Their molecular weight ranges from 40 kDa (K19) to 64 kDa (K9). See also *Type II keratin Type II keratins (or Type II cytokeratins) constitutes the Type II intermediate filaments (IFs) of the intracytoplasmatic cytoskeleton, which is present in all mammalian epithelial cells. The type 2 cytokeratins consist of basic or neutral, high mo ... External links * Proteopedia page on keratins Keratins {{Fibrous prote ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Heterodimer
In biochemistry, a protein dimer is a macromolecular complex or multimer formed by two protein monomers, or single proteins, which are usually non-covalently bound. Many macromolecules, such as proteins or nucleic acids, form dimers. The word ''dimer'' has roots meaning "two parts", '' di-'' + '' -mer''. A protein dimer is a type of protein quaternary structure. A protein homodimer is formed by two identical proteins while a protein heterodimer is formed by two different proteins. Most protein dimers in biochemistry are not connected by covalent bonds. An example of a non-covalent heterodimer is the enzyme reverse transcriptase, which is composed of two different amino acid chains. An exception is dimers that are linked by disulfide bridges such as the homodimeric protein NEMO. Some proteins contain specialized domains to ensure dimerization (dimerization domains) and specificity. The G protein-coupled cannabinoid receptors have the ability to form both homo- and hetero ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Type II Keratin
Type II keratins (or Type II cytokeratins) constitutes the Type II intermediate filaments (IFs) of the intracytoplasmatic cytoskeleton, which is present in all mammalian epithelial cells. The type 2 cytokeratins consist of basic or neutral, high molecular weight proteins which in vivo are arranged in pairs of heterotypic Type I and Type II keratin chains, coexpressed during differentiation of simple and stratified epithelial tissues. It has been seen that Type II Keratins are developed before Type 1 keratins during human embryonic development. Type II cytokeratins are encoded on chromosome 12q and encompasses: CK1, CK2, CK3, CK4, CK5, CK6, CK7 and CK8. Their molecular weight ranges from 52 kDa (CK8) to 67 kDa (CK18). Overall, keratin type 2 plays a crucial role in maintaining the strength and integrity of the skin, hair, and nails. Mutations in keratin genes can lead to various genetic disorders that affect these tissues, such as epidermolysis bullosa simplex, a rare condit ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |