HOME





Joram Lindenstrauss
Joram Lindenstrauss (; October 28, 1936 – April 29, 2012) was an Israeli mathematician working in functional analysis. He was a professor of mathematics at the Einstein Institute of Mathematics. Biography Joram Lindenstrauss was born in Tel Aviv. He was the only child of a pair of lawyers who immigrated to Israel from Berlin. He began to study mathematics at the Hebrew University of Jerusalem in 1954 while serving in the army. He became a full-time student in 1956 and received his master's degree in 1959. In 1962 Lindenstrauss earned his Ph.D. from the Hebrew University (dissertation: ''Extension of Compact Operators'', advisors: Aryeh Dvoretzky, Branko Grünbaum). He worked as a postdoc at Yale University and the University of Washington in Seattle from 1962 - 1965. He was appointed senior lecturer at the Hebrew University in 1965, associate professor on 1967 and full professor in 1969. He became the Leon H. and Ada G. Miller Memorial Professor of Mathematics in 1985. He ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Tel Aviv
Tel Aviv-Yafo ( or , ; ), sometimes rendered as Tel Aviv-Jaffa, and usually referred to as just Tel Aviv, is the most populous city in the Gush Dan metropolitan area of Israel. Located on the Israeli Mediterranean coastline and with a population of 495,600, it is the economic and technological center of the country and a global high tech hub. If East Jerusalem is considered part of Israel, Tel Aviv is the country's second-most-populous city, after Jerusalem; if not, Tel Aviv is the most populous city, ahead of West Jerusalem. Tel Aviv is governed by the Tel Aviv-Yafo Municipality, headed by Mayor Ron Huldai, and is home to most of Israel's foreign embassies. It is a beta+ world city and is ranked 53rd in the 2022 Global Financial Centres Index. Tel Aviv has the third- or fourth-largest economy and the largest economy per capita in the Middle East. Tel Aviv is ranked the 4th top global startup ecosystem hub. The city currently has the highest cost of living in the wor ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Mathematical Reviews
''Mathematical Reviews'' is a journal published by the American Mathematical Society (AMS) that contains brief synopses, and in some cases evaluations, of many articles in mathematics, statistics, and theoretical computer science. The AMS also publishes an associated online bibliographic database called MathSciNet, which contains an electronic version of ''Mathematical Reviews''. Reviews Mathematical Reviews was founded by Otto E. Neugebauer in 1940 as an alternative to the German journal '' Zentralblatt für Mathematik'', which Neugebauer had also founded a decade earlier, but which under the Nazis had begun censoring reviews by and of Jewish mathematicians. The goal of the new journal was to give reviews of every mathematical research publication. As of November 2007, the ''Mathematical Reviews'' database contained information on over 2.2 million articles. The authors of reviews are volunteers, usually chosen by the editors because of some expertise in the area of the articl ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


List Of Israel Prize Recipients
This is an incomplete list of recipients of the Israel Prize from the inception of the Prize in 1953 - 2025. List For each year, the recipients are, in most instances, listed in the order in which they appear on the official Israel Prize website. Note: The table can be sorted chronologically (default), alphabetically or by field utilizing the icon. In 1993, Yeshayahu Leibowitz was selected for the Israel Prize for "his life's work and special contribution to the society and the state," but after backlash from Prime Minister Yitzhak Rabin on political grounds, Leibowitz refused the prize in order to avoid "caus[ing a] tangle for the prime minister." See also *List of Israeli Nobel laureates References External links * List
at the Jewish Virtual Library {{DEFAULTSORT:List Of Israel Prize Recipients Israel Prize recipients, Lifetime achievement awards, Israel Prize winners Lists of Israeli award winners, Israel Prize winners de:Israel-Preis#Die Preisträger ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


American Mathematical Society
The American Mathematical Society (AMS) is an association of professional mathematicians dedicated to the interests of mathematical research and scholarship, and serves the national and international community through its publications, meetings, advocacy and other programs. The society is one of the four parts of the Joint Policy Board for Mathematics and a member of the Conference Board of the Mathematical Sciences. History The AMS was founded in 1888 as the New York Mathematical Society, the brainchild of Thomas Fiske, who was impressed by the London Mathematical Society on a visit to England. John Howard Van Amringe became the first president while Fiske became secretary. The society soon decided to publish a journal, but ran into some resistance over concerns about competing with the '' American Journal of Mathematics''. The result was the ''Bulletin of the American Mathematical Society'', with Fiske as editor-in-chief. The de facto journal, as intended, was influentia ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Jean Bourgain
Jean Louis, baron Bourgain (; – ) was a Belgian mathematician. He was awarded the Fields Medal in 1994 in recognition of his work on several core topics of mathematical analysis such as the geometry of Banach spaces, harmonic analysis, ergodic theory and nonlinear partial differential equations from mathematical physics. Biography Bourgain received his PhD from the Vrije Universiteit Brussel in 1977. He was a faculty member at the University of Illinois Urbana-Champaign and, from 1985 until 1995, professor at Institut des Hautes Études Scientifiques at Bures-sur-Yvette in France, at the Institute for Advanced Study in Princeton, New Jersey from 1994 until 2018. He was an editor for the ''Annals of Mathematics''. From 2012 to 2014, he was a visiting scholar at UC Berkeley. His research work included several areas of mathematical analysis such as the geometry of Banach spaces, harmonic analysis, analytic number theory, combinatorics, ergodic theory, partial differential equat ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Stefan Banach Medal
Stefan Banach ( ; 30 March 1892 – 31 August 1945) was a Polish mathematician who is generally considered one of the 20th century's most important and influential mathematicians. He was the founder of modern functional analysis, and an original member of the Lwów School of Mathematics. His major work was the 1932 book, ''Théorie des opérations linéaires'' (Theory of Linear Operations), the first monograph on the general theory of functional analysis. Born in Kraków to a family of Goral descent, Banach showed a keen interest in mathematics and engaged in solving mathematical problems during school recess. After completing his secondary education, he befriended Hugo Steinhaus, with whom he established the Polish Mathematical Society in 1919 and later published the scientific journal ''Studia Mathematica''. In 1920, he received an assistantship at the Lwów Polytechnic, subsequently becoming a professor in 1922 and a member of the Polish Academy of Learning in 1924. Banach w ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Compact Space
In mathematics, specifically general topology, compactness is a property that seeks to generalize the notion of a closed and bounded subset of Euclidean space. The idea is that a compact space has no "punctures" or "missing endpoints", i.e., it includes all ''limiting values'' of points. For example, the open interval (0,1) would not be compact because it excludes the limiting values of 0 and 1, whereas the closed interval ,1would be compact. Similarly, the space of rational numbers \mathbb is not compact, because it has infinitely many "punctures" corresponding to the irrational numbers, and the space of real numbers \mathbb is not compact either, because it excludes the two limiting values +\infty and -\infty. However, the ''extended'' real number line ''would'' be compact, since it contains both infinities. There are many ways to make this heuristic notion precise. These ways usually agree in a metric space, but may not be equivalent in other topological spaces. One suc ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Extreme Point
In mathematics, an extreme point of a convex set S in a Real number, real or Complex number, complex vector space is a point in S that does not lie in any open line segment joining two points of S. The extreme points of a line segment are called its ''endpoint (geometry), endpoints''. In linear programming problems, an extreme point is also called ''vertex (geometry), vertex'' or ''corner point'' of S. Definition Throughout, it is assumed that X is a Real number, real or Complex number, complex vector space. For any p, x, y \in X, say that p x and y if x \neq y and there exists a 0 < t < 1 such that p = t x + (1-t) y. If K is a subset of X and p \in K, then p is called an of K if it does not lie between any two points of K. That is, if there does exist x, y \in K and 0 < t < 1 such that x \neq y and p = t x + (1-t) y. The s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Bounded Set
In mathematical analysis and related areas of mathematics, a set is called bounded if all of its points are within a certain distance of each other. Conversely, a set which is not bounded is called unbounded. The word "bounded" makes no sense in a general topological space without a corresponding metric. '' Boundary'' is a distinct concept; for example, a circle (not to be confused with a disk) in isolation is a boundaryless bounded set, while the half plane is unbounded yet has a boundary. A bounded set is not necessarily a closed set and vice versa. For example, a subset of a 2-dimensional real space constrained by two parabolic curves and defined in a Cartesian coordinate system is closed by the curves but not bounded (so unbounded). Definition in the real numbers A set of real numbers is called ''bounded from above'' if there exists some real number (not necessarily in ) such that for all in . The number is called an upper bound of . The terms ''bounded from b ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Closed Set
In geometry, topology, and related branches of mathematics, a closed set is a Set (mathematics), set whose complement (set theory), complement is an open set. In a topological space, a closed set can be defined as a set which contains all its limit points. In a complete metric space, a closed set is a set which is Closure (mathematics), closed under the limit of a sequence, limit operation. This should not be confused with closed manifold. Sets that are both open and closed and are called clopen sets. Definition Given a topological space (X, \tau), the following statements are equivalent: # a set A \subseteq X is in X. # A^c = X \setminus A is an open subset of (X, \tau); that is, A^ \in \tau. # A is equal to its Closure (topology), closure in X. # A contains all of its limit points. # A contains all of its Boundary (topology), boundary points. An alternative characterization (mathematics), characterization of closed sets is available via sequences and Net (mathematics), net ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Radon–Nikodym Property
In mathematics, the Bochner integral, named for Salomon Bochner, extends the definition of a multidimensional Lebesgue integral to functions that take values in a Banach space, as the limit of integrals of simple functions. The Bochner integral provides the mathematical foundation for extensions of basic integral transforms into more abstract spaces, vector-valued functions, and operator spaces. Examples of such extensions include vector-valued Laplace transforms and abstract Fourier transforms. Definition Let (X, \Sigma, \mu) be a measure space, and B be a Banach space, and define a measurable function f : X \to B. When B = \R, we have the standard Lebesgue integral \int_X f d\mu, and when B = \R^n, we have the standard multidimensional Lebesgue integral \int_X \vec f d\mu. For generic Banach spaces, the Bochner integral extends the above cases. First, define a simple function to be any finite sum of the form s(x) = \sum_^n \chi_(x) b_i, where the E_i are disjoint members of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Banach Space
In mathematics, more specifically in functional analysis, a Banach space (, ) is a complete normed vector space. Thus, a Banach space is a vector space with a metric that allows the computation of vector length and distance between vectors and is complete in the sense that a Cauchy sequence of vectors always converges to a well-defined limit that is within the space. Banach spaces are named after the Polish mathematician Stefan Banach, who introduced this concept and studied it systematically in 1920–1922 along with Hans Hahn and Eduard Helly. Maurice René Fréchet was the first to use the term "Banach space" and Banach in turn then coined the term " Fréchet space". Banach spaces originally grew out of the study of function spaces by Hilbert, Fréchet, and Riesz earlier in the century. Banach spaces play a central role in functional analysis. In other areas of analysis, the spaces under study are often Banach spaces. Definition A Banach space is a complete nor ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]