Jean-Pierre Ramis
Jean-Pierre Ramis, born in 1943, is a French mathematician and a member of the French Academy of Sciences. His work concerns the dynamic systems of complex field functions, discrete (difference equations and q-differences) and continuous ( differential equations), in particular the notions of integrability (Morales-Ramis theory) and the Galois differential theory. In 1982, Ramis received the Prix Paul Doistau–Émile Blutet. Bibliography * ''Mathématiques tout-en-un pour la Licence'', Dunod, 2013 (Préface d'Alain Connes) * ''Mathématiques tout-en-un pour la Licence 2'', Dunod, 2014 * ''Mathématiques tout-en-un pour la Licence 3'', Dunod, 2015 * ''Cours de Mathématiques pures et appliquées'', De Boeck, 2010 References External links * Research Resource: ** (en) Mathematics Genealogy Project * Notice sur le site de l'Académie des sciences The French Academy of Sciences (, ) is a learned society, founded in 1666 by Louis XIV at the suggestion of Jean- ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mathematician
A mathematician is someone who uses an extensive knowledge of mathematics in their work, typically to solve mathematical problems. Mathematicians are concerned with numbers, data, quantity, mathematical structure, structure, space, Mathematical model, models, and mathematics#Calculus and analysis, change. History One of the earliest known mathematicians was Thales of Miletus (); he has been hailed as the first true mathematician and the first known individual to whom a mathematical discovery has been attributed. He is credited with the first use of deductive reasoning applied to geometry, by deriving four corollaries to Thales's theorem. The number of known mathematicians grew when Pythagoras of Samos () established the Pythagorean school, whose doctrine it was that mathematics ruled the universe and whose motto was "All is number". It was the Pythagoreans who coined the term "mathematics", and with whom the study of mathematics for its own sake begins. The first woman math ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
French Academy Of Sciences
The French Academy of Sciences (, ) is a learned society, founded in 1666 by Louis XIV at the suggestion of Jean-Baptiste Colbert, to encourage and protect the spirit of French Scientific method, scientific research. It was at the forefront of scientific developments in Europe in the 17th and 18th centuries, and is one of the earliest Academy of Sciences, Academies of Sciences. Currently headed by Patrick Flandrin (President of the academy), it is one of the five Academies of the . __TOC__ History The Academy of Sciences traces its origin to Colbert's plan to create a general academy. He chose a small group of scholars who met on 22 December 1666 in the King's library, near the present-day Bibliothèque nationale de France, Bibliothèque Nationale, and thereafter held twice-weekly working meetings there in the two rooms assigned to the group. The first 30 years of the academy's existence were relatively informal, since no statutes had as yet been laid down for the ins ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Difference Equations
In mathematics, a recurrence relation is an equation according to which the nth term of a sequence of numbers is equal to some combination of the previous terms. Often, only k previous terms of the sequence appear in the equation, for a parameter k that is independent of n; this number k is called the ''order'' of the relation. If the values of the first k numbers in the sequence have been given, the rest of the sequence can be calculated by repeatedly applying the equation. In ''linear recurrences'', the th term is equated to a linear function of the k previous terms. A famous example is the recurrence for the Fibonacci numbers, F_n=F_+F_ where the order k is two and the linear function merely adds the two previous terms. This example is a linear recurrence with constant coefficients, because the coefficients of the linear function (1 and 1) are constants that do not depend on n. For these recurrences, one can express the general term of the sequence as a closed-form expression o ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Q-difference
In mathematics, in the area of combinatorics and quantum calculus, the ''q''-derivative, or Jackson derivative, is a ''q''-analog of the ordinary derivative, introduced by Frank Hilton Jackson. It is the inverse of Jackson's ''q''-integration. For other forms of q-derivative, see . Definition The ''q''-derivative of a function ''f''(''x'') is defined as :\left(\frac\right)_q f(x)=\frac. It is also often written as D_qf(x). The ''q''-derivative is also known as the Jackson derivative. Formally, in terms of Lagrange's shift operator in logarithmic variables, it amounts to the operator :D_q= \frac ~ \frac ~, which goes to the plain derivative, D_q \to \frac as q \to 1. It is manifestly linear, :\displaystyle D_q (f(x)+g(x)) = D_q f(x) + D_q g(x)~. It has a product rule analogous to the ordinary derivative product rule, with two equivalent forms :\displaystyle D_q (f(x)g(x)) = g(x)D_q f(x) + f(qx)D_q g(x) = g(qx)D_q f(x) + f(x)D_q g(x). Similarly, it satisfies a quotient ru ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Integrable System
In mathematics, integrability is a property of certain dynamical systems. While there are several distinct formal definitions, informally speaking, an integrable system is a dynamical system with sufficiently many conserved quantities, or first integrals, that its motion is confined to a submanifold of much smaller dimensionality than that of its phase space. Three features are often referred to as characterizing integrable systems: * the existence of a ''maximal'' set of conserved quantities (the usual defining property of complete integrability) * the existence of algebraic invariants, having a basis in algebraic geometry (a property known sometimes as algebraic integrability) * the explicit determination of solutions in an explicit functional form (not an intrinsic property, but something often referred to as solvability) Integrable systems may be seen as very different in qualitative character from more ''generic'' dynamical systems, which are more typically chaotic syste ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Prix Paul Doistau–Émile Blutet
The Prix Paul Doistau–Émile Blutet is a biennial prize awarded by the French Academy of Sciences in the fields of mathematics and physical sciences since 1954. Each recipient receives 3000 euros. The prize is also awarded quadrennially in biology. The award is also occasionally awarded in other disciplines. List of laureates Mathematics * 1958 Marc Krasner * 1980 Jean-Michel Bony * 1982 Jean-Pierre Ramis * 1982 Gérard Maugin * 1985 Dominique Foata * 1986 Pierre-Louis Lions * 1987 Pierre Bérard * 1987 Lucien Szpiro * 1999 Wendelin Werner * 2001 Hélène Esnault * 2004 Laurent Stolovitch * 2006 Alice Guionnet * 2008 Isabelle Gallagher * 2010 Yves André * 2012 Serge Cantat * 2014 Sébastien Boucksom * 2016 Hajer Bahouri * 2018 Physical sciences * 2002 * 2005 Mustapha Besbes * 2007 * 2009 Hasnaa Chennaoui-Aoudjehane * 2011 Henri-Claude Nataf * 2013 * 2015 Philippe André * 2019 Integrative biology * 2000 Jérôme Giraudat * 2004 Marie-Claire Verdus * 2008 Hélè ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Alain Connes
Alain Connes (; born 1 April 1947) is a French mathematician, known for his contributions to the study of operator algebras and noncommutative geometry. He was a professor at the , , Ohio State University and Vanderbilt University. He was awarded the Fields Medal in 1982. Career Alain Connes attended high school at in Marseille, and was then a student of the classes préparatoires in . Between 1966 and 1970 he studied at École normale supérieure in Paris, and in 1973 he obtained a PhD from Pierre and Marie Curie University, under the supervision of Jacques Dixmier. From 1970 to 1974 he was research fellow at the French National Centre for Scientific Research and during 1975 he held a visiting position at Queen's University at Kingston in Canada. In 1976 he returned to France and worked as professor at Pierre and Marie Curie University until 1980 and at CNRS between 1981 and 1984. Moreover, since 1979 he holds the Léon Motchane Chair at IHES. From 1984 until his retir ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
1943 Births
Events Below, the events of World War II have the "WWII" prefix. January * January 1 – WWII: The Soviet Union announces that 22 German divisions have been encircled at Stalingrad, with 175,000 killed and 137,650 captured. * January 4 – WWII: Greek-Polish athlete and saboteur Jerzy Iwanow-Szajnowicz is executed by the Germans at Kaisariani. * January 10 – WWII: Guadalcanal campaign, Guadalcanal Campaign: American forces of the 2nd Marine Division and the 25th Infantry Division (United States), 25th Infantry Division begin their assaults on the Battle of Mount Austen, the Galloping Horse, and the Sea Horse#Galloping Horse, Galloping Horse and Sea Horse on Guadalcanal. Meanwhile, the Japanese Seventeenth Army (Japan), 17th Army makes plans to abandon the island and after fierce resistance withdraws to the west coast of Guadalcanal. * January 11 ** The United States and United Kingdom revise previously unequal treaty relationships with the Republic of China (1912–194 ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Living People
Purpose: Because living persons may suffer personal harm from inappropriate information, we should watch their articles carefully. By adding an article to this category, it marks them with a notice about sources whenever someone tries to edit them, to remind them of WP:BLP (biographies of living persons) policy that these articles must maintain a neutral point of view, maintain factual accuracy, and be properly sourced. Recent changes to these articles are listed on Special:RecentChangesLinked/Living people. Organization: This category should not be sub-categorized. Entries are generally sorted by family name In many societies, a surname, family name, or last name is the mostly hereditary portion of one's personal name that indicates one's family. It is typically combined with a given name to form the full name of a person, although several give .... Maintenance: Individuals of advanced age (over 90), for whom there has been no new documentation in the last ten ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
21st-century French Mathematicians
File:1st century collage.png, From top left, clockwise: Jesus is crucified by Roman authorities in Judaea (17th century painting). Four different men ( Galba, Otho, Vitellius, and Vespasian) claim the title of Emperor within the span of a year; The Great Fire of Rome (18th-century painting) sees the destruction of two-thirds of the city, precipitating the empire's first persecution against Christians, who are blamed for the disaster; The Roman Colosseum is built and holds its inaugural games; Roman forces besiege Jerusalem during the First Jewish–Roman War (19th-century painting); The Trưng sisters lead a rebellion against the Chinese Han dynasty (anachronistic depiction); Boudica, queen of the British Iceni leads a rebellion against Rome (19th-century statue); Knife-shaped coin of the Xin dynasty., 335px rect 30 30 737 1077 Crucifixion of Jesus rect 767 30 1815 1077 Year of the Four Emperors rect 1846 30 3223 1077 Great Fire of Rome rect 30 1108 1106 2155 Boudican ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |