HOME



picture info

Inverse Property Loop
In mathematics, especially in abstract algebra, a quasigroup is an algebraic structure that resembles a group in the sense that " division" is always possible. Quasigroups differ from groups mainly in that the associative and identity element properties are optional. In fact, a nonempty associative quasigroup is a group. A quasigroup that has an identity element is called a loop. Definitions There are at least two structurally equivalent formal definitions of quasigroup: * One defines a quasigroup as a set with one binary operation. * The other, from universal algebra, defines a quasigroup as having three primitive operations. The homomorphic image of a quasigroup that is defined with a single binary operation, however, need not be a quasigroup, in contrast to a quasigroup as having three primitive operations. We begin with the first definition. Algebra A quasigroup is a non-empty set with a binary operation (that is, a magma, indicating that a quasigroup has to satisf ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Magma To Group4
Magma () is the molten or semi-molten natural material from which all igneous rocks are formed. Magma (sometimes colloquially but incorrectly referred to as ''lava'') is found beneath the surface of the Earth, and evidence of magmatism has also been discovered on other terrestrial planets and some natural satellites. Besides molten rock, magma may also contain suspended crystals and gas bubbles. Magma is produced by melting of the mantle or the crust in various tectonic settings, which on Earth include subduction zones, continental rift zones, mid-ocean ridges and hotspots. Mantle and crustal melts migrate upwards through the crust where they are thought to be stored in magma chambers or trans-crustal crystal-rich mush zones. During magma's storage in the crust, its composition may be modified by fractional crystallization, contamination with crustal melts, magma mixing, and degassing. Following its ascent through the crust, magma may feed a volcano and be extruded as lava ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Left Division
Division is one of the four basic operations of arithmetic. The other operations are addition, subtraction, and multiplication. What is being divided is called the ''dividend'', which is divided by the ''divisor'', and the result is called the ''quotient''. At an elementary level the division of two natural numbers is, among other possible interpretations, the process of calculating the number of times one number is contained within another. For example, if 20 apples are divided evenly between 4 people, everyone receives 5 apples (see picture). However, this number of times or the number contained (divisor) need not be integers. The division with remainder or Euclidean division of two natural numbers provides an integer ''quotient'', which is the number of times the second number is completely contained in the first number, and a ''remainder'', which is the part of the first number that remains, when in the course of computing the quotient, no further full chunk of the size ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Moufang Loop
In mathematics, a Moufang loop is a special kind of algebraic structure. It is similar to a group in many ways but need not be associative. Moufang loops were introduced by . Smooth Moufang loops have an associated algebra, the Malcev algebra, similar in some ways to how a Lie group has an associated Lie algebra. Definition A Moufang loop is a loop Q that satisfies the four following equivalent identities for all x, y, z in Q (the binary operation in Q is denoted by juxtaposition): #z(x(zy)) = ((zx)z)y #x(z(yz)) = ((xz)y)z #(zx)(yz) = (z(xy))z #(zx)(yz) = z((xy)z) These identities are known as Moufang identities. Examples * Any group is an associative loop and therefore a Moufang loop. * The nonzero octonions form a nonassociative Moufang loop under octonion multiplication. * The subset of unit norm octonions (forming a 7-sphere in O) is closed under multiplication and therefore forms a Moufang loop. * The subset of unit norm integral octonions is a finite Moufang loop of o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Bol Loop
In mathematics and abstract algebra, a Bol loop is an algebraic structure generalizing the notion of group. Bol loops are named for the Dutch mathematician Gerrit Bol who introduced them in . A loop, ''L'', is said to be a left Bol loop if it satisfies the identity :a(b(ac))=(a(ba))c, for every ''a'',''b'',''c'' in ''L'', while ''L'' is said to be a right Bol loop if it satisfies :((ca)b)a=c((ab)a), for every ''a'',''b'',''c'' in ''L''. These identities can be seen as weakened forms of associativity, or a strengthened form of (left or right) alternativity. A loop is both left Bol and right Bol if and only if it is a Moufang loop. Alternatively, a right or left Bol loop is Moufang if and only if it satisfies the flexible identity ''a(ba) = (ab)a'' . Different authors use the term "Bol loop" to refer to either a left Bol or a right Bol loop. Properties The left (right) Bol identity directly implies the left (right) alternative property, as can be shown by setting b to th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Quasigroup
In mathematics, especially in abstract algebra, a quasigroup is an algebraic structure that resembles a group in the sense that " division" is always possible. Quasigroups differ from groups mainly in that the associative and identity element properties are optional. In fact, a nonempty associative quasigroup is a group. A quasigroup that has an identity element is called a loop. Definitions There are at least two structurally equivalent formal definitions of quasigroup: * One defines a quasigroup as a set with one binary operation. * The other, from universal algebra, defines a quasigroup as having three primitive operations. The homomorphic image of a quasigroup that is defined with a single binary operation, however, need not be a quasigroup, in contrast to a quasigroup as having three primitive operations. We begin with the first definition. Algebra A quasigroup is a non-empty set with a binary operation (that is, a magma, indicating that a quasigroup has to sat ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Abelian Group
In mathematics, an abelian group, also called a commutative group, is a group in which the result of applying the group operation to two group elements does not depend on the order in which they are written. That is, the group operation is commutative. With addition as an operation, the integers and the real numbers form abelian groups, and the concept of an abelian group may be viewed as a generalization of these examples. Abelian groups are named after the Norwegian mathematician Niels Henrik Abel. The concept of an abelian group underlies many fundamental algebraic structures, such as fields, rings, vector spaces, and algebras. The theory of abelian groups is generally simpler than that of their non-abelian counterparts, and finite abelian groups are very well understood and fully classified. Definition An abelian group is a set A, together with an operation ・ , that combines any two elements a and b of A to form another element of A, denoted a \cdot b. The sym ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Idempotent Element
Idempotence (, ) is the property of certain operations in mathematics and computer science whereby they can be applied multiple times without changing the result beyond the initial application. The concept of idempotence arises in a number of places in abstract algebra (in particular, in the theory of projectors and closure operators) and functional programming (in which it is connected to the property of referential transparency). The term was introduced by American mathematician Benjamin Peirce in 1870 in the context of elements of algebras that remain invariant when raised to a positive integer power, and literally means "(the quality of having) the same power", from + '' potence'' (same + power). Definition An element x of a set S equipped with a binary operator \cdot is said to be ''idempotent'' under \cdot if : . The ''binary operation'' \cdot is said to be ''idempotent'' if : . Examples * In the monoid (\mathbb, \times) of the natural numbers with multiplication, on ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Inverse Element
In mathematics, the concept of an inverse element generalises the concepts of opposite () and reciprocal () of numbers. Given an operation denoted here , and an identity element denoted , if , one says that is a left inverse of , and that is a right inverse of . (An identity element is an element such that and for all and for which the left-hand sides are defined.) When the operation is associative, if an element has both a left inverse and a right inverse, then these two inverses are equal and unique; they are called the ''inverse element'' or simply the ''inverse''. Often an adjective is added for specifying the operation, such as in additive inverse, multiplicative inverse, and functional inverse. In this case (associative operation), an invertible element is an element that has an inverse. In a ring, an ''invertible element'', also called a unit, is an element that is invertible under multiplication (this is not ambiguous, as every element is invertible under ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Variety (universal Algebra)
In universal algebra, a variety of algebras or equational class is the class of all algebraic structures of a given signature satisfying a given set of identities. For example, the groups form a variety of algebras, as do the abelian groups, the rings, the monoids etc. According to Birkhoff's theorem, a class of algebraic structures of the same signature is a variety if and only if it is closed under the taking of homomorphic images, subalgebras, and (direct) products. In the context of category theory, a variety of algebras, together with its homomorphisms, forms a category; these are usually called ''finitary algebraic categories''. A ''covariety'' is the class of all coalgebraic structures of a given signature. Terminology A variety of algebras should not be confused with an algebraic variety, which means a set of solutions to a system of polynomial equations. They are formally quite distinct and their theories have little in common. The term "variety of algeb ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Operation (mathematics)
In mathematics, an operation is a function from a set to itself. For example, an operation on real numbers will take in real numbers and return a real number. An operation can take zero or more input values (also called "'' operands''" or "arguments") to a well-defined output value. The number of operands is the arity of the operation. The most commonly studied operations are binary operations (i.e., operations of arity 2), such as addition and multiplication, and unary operations (i.e., operations of arity 1), such as additive inverse and multiplicative inverse. An operation of arity zero, or nullary operation, is a constant. The mixed product is an example of an operation of arity 3, also called ternary operation. Generally, the arity is taken to be finite. However, infinitary operations are sometimes considered, in which case the "usual" operations of finite arity are called finitary operations. A partial operation is defined similarly to an operatio ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Universal Quantifier
In mathematical logic, a universal quantification is a type of quantifier, a logical constant which is interpreted as "given any", "for all", "for every", or "given an arbitrary element". It expresses that a predicate can be satisfied by every member of a domain of discourse. In other words, it is the predication of a property or relation to every member of the domain. It asserts that a predicate within the scope of a universal quantifier is true of every value of a predicate variable. It is usually denoted by the turned A (∀) logical operator symbol, which, when used together with a predicate variable, is called a universal quantifier ("", "", or sometimes by "" alone). Universal quantification is distinct from ''existential'' quantification ("there exists"), which only asserts that the property or relation holds for at least one member of the domain. Quantification in general is covered in the article on quantification (logic). The universal quantifier is e ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematical Identity
In mathematics, an identity is an equality relating one mathematical expression ''A'' to another mathematical expression ''B'', such that ''A'' and ''B'' (which might contain some variables) produce the same value for all values of the variables within a certain domain of discourse. In other words, ''A'' = ''B'' is an identity if ''A'' and ''B'' define the same functions, and an identity is an equality between functions that are differently defined. For example, (a+b)^2 = a^2 + 2ab + b^2 and \cos^2\theta + \sin^2\theta =1 are identities. Identities are sometimes indicated by the triple bar symbol instead of , the equals sign. Formally, an identity is a universally quantified equality. Common identities Algebraic identities Certain identities, such as a+0=a and a+(-a)=0, form the basis of algebra, while other identities, such as (a+b)^2 = a^2 + 2ab +b^2 and a^2 - b^2 = (a+b)(a-b), can be useful in simplifying algebraic expressions and expanding the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]