Initial Attractiveness
   HOME



picture info

Initial Attractiveness
The initial attractiveness is a possible extension of the Barabási–Albert model (preferential attachment model). The Barabási–Albert model generates scale-free networks where the degree distribution can be described by a pure power law. However, the degree distribution of most real life networks cannot be described by a power law solely. The most common discrepancies regarding the degree distribution found in real networks are the high degree cut-off (or structural cut-off) and the low degree saturation. The inclusion of initial attractiveness in the Barabási–Albert model addresses the low-degree saturation phenomenon. Intuitively, it also makes sense since when moving to a new city you can still make new connections even though you don't know anyone. But in the Barabási–Albert model a node that has degree zero has probability 0 of garnering new connections. With initial attractiveness you always have a residual "attractiveness" irrespective of how many connections you ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Barabási–Albert Model
The Barabási–Albert (BA) model is an algorithm for generating random scale-free network, scale-free complex network, networks using a preferential attachment mechanism. Several natural and human-made systems, including the Internet, the World Wide Web, citation analysis, citation networks, and some social networks are thought to be approximately scale-free and certainly contain few nodes (called hubs) with unusually high degree as compared to the other nodes of the network. The BA model tries to explain the existence of such nodes in real networks. The algorithm is named for its inventors Albert-László Barabási and Réka Albert. Concepts Many observed networks (at least approximately) fall into the class of scale-free networks, meaning that they have power law, power-law (or scale-free) degree distributions, while random graph models such as the Erdős–Rényi model, Erdős–Rényi (ER) model and the Watts and Strogatz model, Watts–Strogatz (WS) model do not exhibit po ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Degree Distribution
In the study of graphs and networks, the degree of a node in a network is the number of connections it has to other nodes and the degree distribution is the probability distribution of these degrees over the whole network. Definition The degree of a node in a network (sometimes referred to incorrectly as the connectivity) is the number of connections or edges the node has to other nodes. If a network is directed, meaning that edges point in one direction from one node to another node, then nodes have two different degrees, the in-degree, which is the number of incoming edges, and the out-degree, which is the number of outgoing edges. The degree distribution ''P''(''k'') of a network is then defined to be the fraction of nodes in the network with degree ''k''. Thus if there are ''n'' nodes in total in a network and ''n''''k'' of them have degree ''k'', we have :P(k) = \frac. The same information is also sometimes presented in the form of a ''cumulative degree distribution' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Power Law
In statistics, a power law is a Function (mathematics), functional relationship between two quantities, where a Relative change and difference, relative change in one quantity results in a relative change in the other quantity proportional to the change raised to a constant exponent: one quantity varies as a power of another. The change is independent of the initial size of those quantities. For instance, the area of a square has a power law relationship with the length of its side, since if the length is doubled, the area is multiplied by 2, while if the length is tripled, the area is multiplied by 3, and so on. Empirical examples The distributions of a wide variety of physical, biological, and human-made phenomena approximately follow a power law over a wide range of magnitudes: these include the sizes of craters on the moon and of solar flares, cloud sizes, the foraging pattern of various species, the sizes of activity patterns of neuronal populations, the frequencies of words ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Structural Cut-off
The structural cut-off is a concept in network science which imposes a degree cut-off in the degree distribution of a finite size network due to structural limitations (such as the simple graph property). Networks with vertices with degree higher than the structural cut-off will display structural disassortativity. Definition The structural cut-off is a maximum degree cut-off that arises from the structure of a finite size network. Let E_ be the number of edges between all vertices of degree k and k' if k \neq k', and twice the number if k=k'. Given that multiple edges between two vertices are not allowed, E_ is bounded by the maximum number of edges between two degree classes m_ . Then, the ratio can be written : r_ \equiv \frac = \frac , where \langle k \rangle is the average degree of the network, N is the total number of vertices, P(k) is the probability a randomly chosen vertex will have degree k, and P(k,k') = E_/\langle k \rangle N is the probability that a randomly p ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Small Degree Cut Off Saturation
Small means of insignificant size. Small may also refer to: Science and technology * SMALL, an ALGOL-like programming language * ''Small'' (journal), a nano-science publication * <small>, an HTML element that defines smaller text Arts and entertainment Fictional characters * Small, in the British children's show Big & Small Other uses * Small (surname) * List of people known as the Small * "Small", a song from the album ''The Cosmos Rocks'' by Queen + Paul Rodgers See also * Smal (other) * Smalls (other) Smalls may refer to: * Smalls (surname) * Camp Robert Smalls, a United States Naval training facility * Fort Robert Smalls, a Civil War redoubt * Smalls Creek, a northern tributary of the Parramatta River * Smalls Falls, a waterfall in Maine, USA ...
{{disambiguation ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Scientific Collaboration Network
Scientific collaboration network is a social network where nodes are scientists and links are co-authorships as the latter is one of the most well documented forms of scientific collaboration. It is an undirected, scale-free network where the degree distribution follows a power law with an exponential cutoff – most authors are sparsely connected while a few authors are intensively connected. The network has an assortative nature – hubs tend to link to other hubs and low-degree nodes tend to link to low-degree nodes. Assortativity is not structural, meaning that it is not a consequence of the degree distribution, but it is generated by some process that governs the network’s evolution. Study by Mark Newman A detailed reconstruction of an actual collaboration was made by Mark Newman. He analyzed the collaboration networks through several large databases in the fields of biology and medicine, physics and computer science in a five-year window (1995-1999). The results show ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Co-stardom Network
In social network analysis, the co-stardom network represents the collaboration graph of film actors i.e. movie stars. The co-stardom network can be represented by an undirected graph. Nodes correspond to the movie star actors and two nodes are linked if they co-starred (performed) in the same movie. The links are un-directed, and can be weighted or not depending on the goals of study. If the number of times two actors appeared in a movie is needed, links are assigned weights. Initially, the network was found to have a small-world property. Afterwards, it was discovered that more precisely it exhibits a scale-free (power-law) behavior. The co-stardom network can also be represented by a bipartite graph where nodes are of two types: actors and movies. Links connect different types of nodes (i.e. actors to movies) if they have a relationship (actors in a movie). The parlor game of Six Degrees of Kevin Bacon involves finding paths in this network from specified actors to Kevin B ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Preferential Attachment
A preferential attachment process is any of a class of processes in which some quantity, typically some form of wealth or credit, is distributed among a number of individuals or objects according to how much they already have, so that those who are already wealthy receive more than those who are not. "Preferential attachment" is only the most recent of many names that have been given to such processes. They are also referred to under the names Yule process, cumulative advantage, the rich get richer, and the Matthew effect. They are also related to Gibrat's law. The principal reason for scientific interest in preferential attachment is that it can, under suitable circumstances, generate power law distributions. If preferential attachment is non-linear, measured distributions may deviate from a power law. These mechanisms may generate distributions which are approximately power law over transient periods. Definition A preferential attachment process is a stochastic urn p ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Fitness Model (network Theory)
In complex network theory, the fitness model is a model of the evolution of a network: how the links between nodes change over time depends on the fitness of nodes. Fitter nodes attract more links at the expense of less fit nodes. It has been used to model the network structure of the World Wide Web. Description of the model The model is based on the idea of fitness, an inherent competitive factor that nodes may have, capable of affecting the network's evolution. According to this idea, the nodes' intrinsic ability to attract links in the network varies from node to node, the most efficient (or "fit") being able to gather more edges in the expense of others. In that sense, not all nodes are identical to each other, and they claim their degree increase according to the fitness they possess every time. The fitness factors of all the nodes composing the network may form a distribution ρ(η) characteristic of the system been studied. Ginestra Bianconi and Albert-László Barabási p ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Small-world Network
A small-world network is a graph characterized by a high clustering coefficient and low distances. In an example of the social network, high clustering implies the high probability that two friends of one person are friends themselves. The low distances, on the other hand, mean that there is a short chain of social connections between any two people (this effect is known as six degrees of separation). Specifically, a small-world network is defined to be a network where the typical distance ''L'' between two randomly chosen nodes (the number of steps required) grows proportionally to the logarithm of the number of nodes ''N'' in the network, that is: :L \propto \log N while the global clustering coefficient is not small. In the context of a social network, this results in the small world phenomenon of strangers being linked by a short chain of acquaintances. Many empirical graphs show the small-world effect, including social networks, wikis such as Wikipedia, gene n ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Scale-free Network
A scale-free network is a network whose degree distribution follows a power law, at least asymptotically. That is, the fraction ''P''(''k'') of nodes in the network having ''k'' connections to other nodes goes for large values of ''k'' as : P(k) \ \sim \ k^\boldsymbol where \gamma is a parameter whose value is typically in the range 2<\gamma<3 (wherein the second moment ( scale parameter) of k^\boldsymbol is infinite but the first moment is finite), although occasionally it may lie outside these bounds. The name "scale-free" could be explained by the fact that some moments of the degree distribution are not defined, so that the network does not have a characteristic scale or "size". and the
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]