HOME





InfiniteReality
InfiniteReality refers to a 3D graphics hardware architecture and a family of graphics systems that implemented the aforementioned hardware architecture that was developed and manufactured by Silicon Graphics from 1996 to 2005. The InfiniteReality was positioned as Silicon Graphics' high-end visualization hardware for their MIPS/IRIX platform and was used exclusively in their Onyx family of visualization systems, which are sometimes referred to as "graphics supercomputers" or "visualization supercomputers". The InfiniteReality was marketed to and used by large organizations such as companies and universities that are involved in computer simulation, digital content creation, engineering and research. InfiniteReality The InfiniteReality was introduced in early 1996 and was used in the Silicon Graphics Onyx. It succeeded the RealityEngine, although the RealityEngine coexisted with the InfiniteReality for some time for the Onyx as an entry-level option for deskside "workstation" ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

RealityEngine
RealityEngine is a 3D graphics hardware architecture and a family of graphics systems which was developed and manufactured by Silicon Graphics during the early to mid 1990s. RealityEngine was positioned as the company's high-end visualization hardware for its MIPS/IRIX platform. RealityEngine is designed for deployment exclusively within the company's Crimson and Onyx Onyx is a typically black-and-white banded variety of agate, a silicate mineral. The bands can also be monochromatic with alternating light and dark bands. ''Sardonyx'' is a variety with red to brown bands alternated with black or white bands. ... family of visualization systems, which are sometimes referred to as "graphics supercomputers" or "visualization supercomputers". The RealityEngine was marketed to large organizations, such as companies and universities that are involved in computer simulation, digital content creation, engineering and research. It was succeeded by the InfiniteReality in early 1996, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

SGI Onyx
Onyx is a series of visualization systems designed and manufactured by SGI, introduced in 1993 and offered in two models, deskside and rackmount, codenamed Eveready and Terminator respectively. Onyx's basic system architecture is based on the SGI Challenge servers, but with graphics hardware. Onyx was used for one of the first television broadcasts of real-time 3D computer graphics, in the 1994 US national elections. Onyx was the basis of development of Nintendo 64 hardware and games, launched in 1996. Onyx was succeeded by the Onyx2 in 1996 and was discontinued on March 31, 1999. CPU The deskside variant can accept one CPU board, and the rackmount variant can take up to six CPU boards. Both models were launched with the IP19 CPU board with one, two, or four MIPS R4400 CPUs, initially with 100 and 150 MHz options and later increased to 200 and 250 MHz. Later, the IP21 CPU board was introduced, with one or two R8000 microprocessors at 75 or 90 MHz; machine ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Silicon Graphics
Silicon Graphics, Inc. (stylized as SiliconGraphics before 1999, later rebranded SGI, historically known as Silicon Graphics Computer Systems or SGCS) was an American high-performance computing manufacturer, producing computer hardware and software. Founded in Mountain View, California, in November 1981 by James H. Clark, the computer scientist and entrepreneur perhaps best known for founding Netscape (with Marc Andreessen). Its initial market was 3D graphics computer workstations, but its products, strategies and market positions developed significantly over time. Early systems were based on the RealityEngine, Geometry Engine that Clark and Marc Hannah had developed at Stanford University, and were derived from Clark's broader background in computer graphics. The Geometry Engine was the first very-large-scale integration (VLSI) implementation of a geometry pipeline, specialized hardware that accelerated the "inner-loop" geometric computations needed to display three-dimensional ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Register File
A register file is an array of processor registers in a central processing unit (CPU). The instruction set architecture of a CPU will almost always define a set of registers which are used to stage data between memory and the functional units on the chip. The register file is part of the architecture and visible to the programmer, as opposed to the concept of transparent caches. In simpler CPUs, these ''architectural registers'' correspond one-for-one to the entries in a physical register file (PRF) within the CPU. More complicated CPUs use register renaming, so that the mapping of which physical entry stores a particular architectural register changes dynamically during execution. Modern integrated circuit-based register files are usually implemented by way of fast static RAMs with multiple ports. Such RAMs are distinguished by having dedicated read and write ports, whereas ordinary multiported SRAMs will usually read and write through the same ports. Register banking is th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Arithmetic Logic Unit
In computing, an arithmetic logic unit (ALU) is a Combinational logic, combinational digital circuit that performs arithmetic and bitwise operations on integer binary numbers. This is in contrast to a floating-point unit (FPU), which operates on floating point numbers. It is a fundamental building block of many types of computing circuits, including the central processing unit (CPU) of computers, FPUs, and graphics processing units (GPUs). The inputs to an ALU are the data to be operated on, called operands, and a code indicating the operation to be performed (opcode); the ALU's output is the result of the performed operation. In many designs, the ALU also has status inputs or outputs, or both, which convey information about a previous operation or the current operation, respectively, between the ALU and external status registers. Signals An ALU has a variety of input and output net (electronics), nets, which are the electrical conductors used to convey Digital signal (electroni ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Floating-point
In computing, floating-point arithmetic (FP) is arithmetic on subsets of real numbers formed by a ''significand'' (a Sign (mathematics), signed sequence of a fixed number of digits in some Radix, base) multiplied by an integer power of that base. Numbers of this form are called floating-point numbers. For example, the number 2469/200 is a floating-point number in base ten with five digits: 2469/200 = 12.345 = \! \underbrace_\text \! \times \! \underbrace_\text\!\!\!\!\!\!\!\overbrace^ However, 7716/625 = 12.3456 is not a floating-point number in base ten with five digits—it needs six digits. The nearest floating-point number with only five digits is 12.346. And 1/3 = 0.3333… is not a floating-point number in base ten with any finite number of digits. In practice, most floating-point systems use Binary number, base two, though base ten (decimal floating point) is also common. Floating-point arithmetic operations, such as addition and division, approximate the correspond ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Multiple Instruction, Multiple Data
In computing, multiple instruction, multiple data (MIMD) is a technique employed to achieve parallelism. Machines using MIMD have a number of processor cores that function asynchronously and independently. At any time, different processors may be executing different instructions on different pieces of data. MIMD architectures may be used in a number of application areas such as computer-aided design/computer-aided manufacturing, simulation, modeling, and as communication switches. MIMD machines can be of either shared memory or distributed memory categories. These classifications are based on how MIMD processors access memory. Shared memory machines may be of the bus-based, extended, or hierarchical type. Distributed memory machines may have hypercube or mesh interconnection schemes. Examples An example of MIMD system is Intel Xeon Phi, descended from Larrabee microarchitecture. These processors have multiple processing cores (up to 61 as of 2015) that can execute differen ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cache (computing)
In computing, a cache ( ) is a hardware or software component that stores data so that future requests for that data can be served faster; the data stored in a cache might be the result of an earlier computation or a copy of data stored elsewhere. A cache hit occurs when the requested data can be found in a cache, while a cache miss occurs when it cannot. Cache hits are served by reading data from the cache, which is faster than recomputing a result or reading from a slower data store; thus, the more requests that can be served from the cache, the faster the system performs. To be cost-effective, caches must be relatively small. Nevertheless, caches are effective in many areas of computing because typical Application software, computer applications access data with a high degree of locality of reference. Such access patterns exhibit temporal locality, where data is requested that has been recently requested, and spatial locality, where data is requested that is stored near dat ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

SDRAM
Synchronous dynamic random-access memory (synchronous dynamic RAM or SDRAM) is any DRAM where the operation of its external pin interface is coordinated by an externally supplied clock signal. DRAM integrated circuits (ICs) produced from the early 1970s to the early 1990s used an ''asynchronous'' interface, in which input control signals have a direct effect on internal functions delayed only by the trip across its semiconductor pathways. SDRAM has a ''synchronous'' interface, whereby changes on control inputs are recognised after a rising edge of its clock input. In SDRAM families standardized by JEDEC, the clock signal controls the stepping of an internal finite-state machine that responds to incoming commands. These commands can be pipelined to improve performance, with previously started operations completing while new commands are received. The memory is divided into several equally sized but independent sections called ''banks'', allowing the device to operate on a memor ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Direct Memory Access
Direct memory access (DMA) is a feature of computer systems that allows certain hardware subsystems to access main system computer memory, memory independently of the central processing unit (CPU). Without DMA, when the CPU is using programmed input/output, it is typically fully occupied for the entire duration of the read or write operation, and is thus unavailable to perform other work. With DMA, the CPU first initiates the transfer, then it does other operations while the transfer is in progress, and it finally receives an interrupt from the DMA controller (DMAC) when the operation is done. This feature is useful at any time that the CPU cannot keep up with the rate of data transfer, or when the CPU needs to perform work while waiting for a relatively slow I/O data transfer. Many hardware systems use DMA, including disk drive controllers, graphics cards, network cards and sound cards. DMA is also used for intra-chip data transfer in some multi-core processors. Computers that h ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

RISC
In electronics and computer science, a reduced instruction set computer (RISC) is a computer architecture designed to simplify the individual instructions given to the computer to accomplish tasks. Compared to the instructions given to a complex instruction set computer (CISC), a RISC computer might require more instructions (more code) in order to accomplish a task because the individual instructions perform simpler operations. The goal is to offset the need to process more instructions by increasing the speed of each instruction, in particular by implementing an instruction pipeline, which may be simpler to achieve given simpler instructions. The key operational concept of the RISC computer is that each instruction performs only one function (e.g. copy a value from memory to a register). The RISC computer usually has many (16 or 32) high-speed, general-purpose registers with a load–store architecture in which the code for the register-register instructions (for performing ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


NUMAlink
NUMAlink is a system interconnect developed by Silicon Graphics (SGI) for use in its distributed shared memory ccNUMA computer systems. NUMAlink was originally developed by SGI for their Origin 2000 and Onyx2 systems. At the time of these systems' introduction, it was branded as "CrayLink" during SGI's brief ownership of Cray Research. Hewlett Packard Enterprise entered an original equipment manufacturer (OEM) arrangement with Silicon Graphics International (SGI) to use Numalink as the foundation in some mission critical servers. ; Notes NUMAlink 2 There was no NUMAlink 1, as SGI's engineers deemed the system interconnect used in the Stanford DASH to be the first generation NUMAlink interconnect. NUMAlink 2 (branded as CrayLink) was announced in October 1996 for the Onyx2 visualization systems, the Origin 200 and the Origin 2000 servers and supercomputers. The NUMAlink 2 interface is the Hub ASIC. NUMAlink 2 is capable of 1.6 GB/s of peak bandwidth through two 800 MB ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]