Infinite-dimensional Chern–Simons Theory
   HOME





Infinite-dimensional Chern–Simons Theory
In mathematics, infinite-dimensional Chern–Simons theory (not to be confused with ∞-Chern–Simons theory) is a generalization of Chern–Simons theory to manifolds with infinite dimensions. These are not modeled with finite-dimensional Euclidean space, Euclidean spaces, but infinite-dimensional Topological vector space, topological vector spaces, for example Hilbert space, Hilbert, Banach space, Banach and Fréchet space, Fréchet spaces, which lead to Hilbert manifold, Hilbert, Banach space, Banach and Fréchet manifold, Fréchet manifolds respectively. Principal bundle, Principal bundles, which in finite-dimensional Chern–Simons theory are considered with (Compact space, compact) Lie group, Lie groups as gauge groups, are then fittingly considered with Hilbert Lie, Banach Lie and Fréchet Lie groups as gauge groups respectively, which also makes their total spaces into a Hilbert, Banach and Fréchet manifold respectively. These are called Hilbert, Banach and Fréchet princip ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting poin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  



MORE