HOME
*





Index Of A Lie Algebra
In algebra, let g be a Lie algebra over a field K. Let further \xi\in\mathfrak^* be a one-form on g. The stabilizer g''ξ'' of ''ξ'' is the Lie subalgebra of elements of g that annihilate ''ξ'' in the coadjoint representation. The index of the Lie algebra is :\operatorname\mathfrak:=\min\limits_ \dim\mathfrak_\xi. Examples Reductive Lie algebras If g is reductive then the index of g is also the rank of g, because the adjoint and coadjoint representation are isomorphic and rk g is the minimal dimension of a stabilizer of an element in g. This is actually the dimension of the stabilizer of any regular element in g. Frobenius Lie algebra If ind g = 0, then g is called ''Frobenius Lie algebra''. This is equivalent to the fact that the Kirillov form K_\xi\colon \mathfrak\to \mathbb:(X,Y)\mapsto \xi( ,Y is non-singular for some ''ξ'' in g*. Another equivalent condition when g is the Lie algebra of an algebraic group ''G'', is that g is Frobenius if and only if ''G'' has an ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Lie Algebra
In mathematics, a Lie algebra (pronounced ) is a vector space \mathfrak g together with an operation called the Lie bracket, an alternating bilinear map \mathfrak g \times \mathfrak g \rightarrow \mathfrak g, that satisfies the Jacobi identity. The Lie bracket of two vectors x and y is denoted ,y/math>. The vector space \mathfrak g together with this operation is a non-associative algebra, meaning that the Lie bracket is not necessarily associative. Lie algebras are closely related to Lie groups, which are groups that are also smooth manifolds: any Lie group gives rise to a Lie algebra, which is its tangent space at the identity. Conversely, to any finite-dimensional Lie algebra over real or complex numbers, there is a corresponding connected Lie group unique up to finite coverings ( Lie's third theorem). This correspondence allows one to study the structure and classification of Lie groups in terms of Lie algebras. In physics, Lie groups appear as symmetry grou ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Field (mathematics)
In mathematics, a field is a set on which addition, subtraction, multiplication, and division are defined and behave as the corresponding operations on rational and real numbers do. A field is thus a fundamental algebraic structure which is widely used in algebra, number theory, and many other areas of mathematics. The best known fields are the field of rational numbers, the field of real numbers and the field of complex numbers. Many other fields, such as fields of rational functions, algebraic function fields, algebraic number fields, and ''p''-adic fields are commonly used and studied in mathematics, particularly in number theory and algebraic geometry. Most cryptographic protocols rely on finite fields, i.e., fields with finitely many elements. The relation of two fields is expressed by the notion of a field extension. Galois theory, initiated by Évariste Galois in the 1830s, is devoted to understanding the symmetries of field extensions. Among other result ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


One-form
In differential geometry, a one-form on a differentiable manifold is a smooth section of the cotangent bundle. Equivalently, a one-form on a manifold M is a smooth mapping of the total space of the tangent bundle of M to \R whose restriction to each fibre is a linear functional on the tangent space. Symbolically, \alpha : TM \rightarrow ,\quad \alpha_x = \alpha, _: T_xM \rightarrow , where \alpha_x is linear. Often one-forms are described locally, particularly in local coordinates. In a local coordinate system, a one-form is a linear combination of the differentials of the coordinates: \alpha_x = f_1(x) \, dx_1 + f_2(x) \, dx_2 + \cdots + f_n(x) \, dx_n , where the f_i are smooth functions. From this perspective, a one-form has a covariant transformation law on passing from one coordinate system to another. Thus a one-form is an order 1 covariant tensor field. Examples The most basic non-trivial differential one-form is the "change in angle" form d\theta. This is defined ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Coadjoint Representation
In mathematics, the coadjoint representation K of a Lie group G is the dual of the adjoint representation. If \mathfrak denotes the Lie algebra of G, the corresponding action of G on \mathfrak^*, the dual space to \mathfrak, is called the coadjoint action. A geometrical interpretation is as the action by left-translation on the space of right-invariant 1-forms on G. The importance of the coadjoint representation was emphasised by work of Alexandre Kirillov, who showed that for nilpotent Lie groups G a basic role in their representation theory is played by coadjoint orbits. In the Kirillov method of orbits, representations of G are constructed geometrically starting from the coadjoint orbits. In some sense those play a substitute role for the conjugacy classes of G, which again may be complicated, while the orbits are relatively tractable. Formal definition Let G be a Lie group and \mathfrak be its Lie algebra. Let \mathrm : G \rightarrow \mathrm(\mathfrak) denote the adjoint repr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Reductive Lie Algebra
In mathematics, a Lie algebra is reductive if its adjoint representation is completely reducible, whence the name. More concretely, a Lie algebra is reductive if it is a direct sum of a semisimple Lie algebra and an abelian Lie algebra: \mathfrak = \mathfrak \oplus \mathfrak; there are alternative characterizations, given below. Examples The most basic example is the Lie algebra \mathfrak_n of n \times n matrices with the commutator as Lie bracket, or more abstractly as the endomorphism algebra of an ''n''-dimensional vector space, \mathfrak(V). This is the Lie algebra of the general linear group GL(''n''), and is reductive as it decomposes as \mathfrak_n = \mathfrak_n \oplus \mathfrak, corresponding to traceless matrices and scalar matrices. Any semisimple Lie algebra or abelian Lie algebra is ''a fortiori'' reductive. Over the real numbers, compact Lie algebras are reductive. Definitions A Lie algebra \mathfrak over a field of characteristic 0 is called reductive if a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Adjoint Representation Of A Lie Algebra
In mathematics, the adjoint representation (or adjoint action) of a Lie group ''G'' is a way of representing the elements of the group as linear transformations of the group's Lie algebra, considered as a vector space. For example, if ''G'' is GL(n, \mathbb), the Lie group of real ''n''-by-''n'' invertible matrices, then the adjoint representation is the group homomorphism that sends an invertible ''n''-by-''n'' matrix g to an endomorphism of the vector space of all linear transformations of \mathbb^n defined by: x \mapsto g x g^ . For any Lie group, this natural representation is obtained by linearizing (i.e. taking the differential of) the action of ''G'' on itself by conjugation. The adjoint representation can be defined for linear algebraic groups over arbitrary fields. Definition Let ''G'' be a Lie group, and let :\Psi: G \to \operatorname(G) be the mapping , with Aut(''G'') the automorphism group of ''G'' and given by the inner automorphism (conjugation) :\Ps ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Kirillov Form
Kirillov (masculine) or Kirillova (feminine or genitive of Kirill) may refer to: *Kirillov (surname) (''Kirillova''), Russian last name *Kirillov Urban Settlement, a municipal formation which the town of district significance of Kirillov and two rural localities in Kirillovsky District of Vologda Oblast, Russia are incorporated as *Kirillov (town), a town in Kirillovsky District of Vologda Oblast, Russia *Kirillova (rural locality) Kirillov (masculine) or Kirillova (feminine or genitive of Kirill) may refer to: *Kirillov (surname) (''Kirillova''), Russian last name *Kirillov Urban Settlement, a municipal formation which the town of district significance of Kirillov and two ru ..., a rural locality (a village) in Irbitsky District of Sverdlovsk Oblast, Russia {{Disambiguation, geo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Algebraic Group
In mathematics, an algebraic group is an algebraic variety endowed with a group structure which is compatible with its structure as an algebraic variety. Thus the study of algebraic groups belongs both to algebraic geometry and group theory. Many groups of geometric transformations are algebraic groups; for example, orthogonal groups, general linear groups, projective groups, Euclidean groups, etc. Many matrix groups are also algebraic. Other algebraic groups occur naturally in algebraic geometry, such as elliptic curves and Jacobian varieties. An important class of algebraic groups is given by the affine algebraic groups, those whose underlying algebraic variety is an affine variety; they are exactly the algebraic subgroups of the general linear group, and are therefore also called ''linear algebraic groups''. Another class is formed by the abelian varieties, which are the algebraic groups whose underlying variety is a projective variety. Chevalley's structure th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Transcendence Degree
In abstract algebra, the transcendence degree of a field extension ''L'' / ''K'' is a certain rather coarse measure of the "size" of the extension. Specifically, it is defined as the largest cardinality of an algebraically independent subset of ''L'' over ''K''. A subset ''S'' of ''L'' is a transcendence basis of ''L'' / ''K'' if it is algebraically independent over ''K'' and if furthermore ''L'' is an algebraic extension of the field ''K''(''S'') (the field obtained by adjoining the elements of ''S'' to ''K''). One can show that every field extension has a transcendence basis, and that all transcendence bases have the same cardinality; this cardinality is equal to the transcendence degree of the extension and is denoted trdeg''K'' ''L'' or trdeg(''L'' / ''K''). If no field ''K'' is specified, the transcendence degree of a field ''L'' is its degree relative to the prime field of the same characteristic, i.e., the rational numbers field Q if ''L'' is of characteristic 0 and ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]