Hypernetted Chain Equation
   HOME





Hypernetted Chain Equation
In statistical mechanics the hypernetted-chain equation is a closure relation to solve the Ornstein–Zernike equation which relates the direct correlation function to the total correlation function. It is commonly used in fluid theory to obtain e.g. expressions for the radial distribution function. It is given by: : \ln y(r_) =\ln g(r_) + \beta u(r_) =\rho \int \left (r_) - \ln g(r_) - \beta u(r_)\righth(r_) \, d \mathbf, \, where \rho = \frac is the number density of molecules, h(r) = g(r)-1, g(r) is the radial distribution function, u(r) is the direct interaction between pairs. \beta = \frac with T being the Thermodynamic temperature and k_ the Boltzmann constant The Boltzmann constant ( or ) is the proportionality factor that relates the average relative thermal energy of particles in a ideal gas, gas with the thermodynamic temperature of the gas. It occurs in the definitions of the kelvin (K) and the .... Derivation The direct correlation function represen ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Statistical Mechanics
In physics, statistical mechanics is a mathematical framework that applies statistical methods and probability theory to large assemblies of microscopic entities. Sometimes called statistical physics or statistical thermodynamics, its applications include many problems in a wide variety of fields such as biology, neuroscience, computer science Computer science is the study of computation, information, and automation. Computer science spans Theoretical computer science, theoretical disciplines (such as algorithms, theory of computation, and information theory) to Applied science, ..., information theory and sociology. Its main purpose is to clarify the properties of matter in aggregate, in terms of physical laws governing atomic motion. Statistical mechanics arose out of the development of classical thermodynamics, a field for which it was successful in explaining macroscopic physical properties—such as temperature, pressure, and heat capacity—in terms of microscop ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Closure (mathematics)
In mathematics, a subset of a given set (mathematics), set is closed under an Operation (mathematics), operation on the larger set if performing that operation on members of the subset always produces a member of that subset. For example, the natural numbers are closed under addition, but not under subtraction: is not a natural number, although both 1 and 2 are. Similarly, a subset is said to be closed under a ''collection'' of operations if it is closed under each of the operations individually. The closure of a subset is the result of a closure operator applied to the subset. The ''closure'' of a subset under some operations is the smallest superset that is closed under these operations. It is often called the ''span'' (for example linear span) or the ''generated set''. Definitions Let be a set (mathematics), set equipped with one or several methods for producing elements of from other elements of .Operation (mathematics), Operations and (partial function, partial) multivar ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Ornstein–Zernike Equation
In statistical mechanics the Ornstein–Zernike (OZ) equation is an integral equation introduced by Leonard Ornstein and Frits Zernike that relates different correlation functions with each other. Together with a closure relation, it is used to compute the structure factor and thermodynamic state functions of amorphous matter like liquids or colloids. Context The OZ equation has practical importance as a foundation for approximations for computing the pair correlation function of molecules or ions in liquids, or of colloidal particles. The pair correlation function is related via Fourier transform to the static structure factor, which can be determined experimentally using X-ray diffraction or neutron diffraction. The OZ equation relates the pair correlation function to the direct correlation function. The direct correlation function is only used in connection with the OZ equation, which can actually be seen as its definition. Besides the OZ equation, other methods for ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  



MORE