HOME



picture info

Hyperbolic Surface
In mathematics, particularly in complex analysis, a Riemann surface is a connected one-dimensional complex manifold. These surfaces were first studied by and are named after Bernhard Riemann. Riemann surfaces can be thought of as deformed versions of the complex plane: locally near every point they look like patches of the complex plane, but the global topology can be quite different. For example, they can look like a sphere or a torus or several sheets glued together. Examples of Riemann surfaces include graphs of multivalued functions such as √''z'' or log(''z''), e.g. the subset of pairs with . Every Riemann surface is a surface: a two-dimensional real manifold, but it contains more structure (specifically a complex structure). Conversely, a two-dimensional real manifold can be turned into a Riemann surface (usually in several inequivalent ways) if and only if it is orientable and metrizable. Given this, the sphere and torus admit complex structures but the Möbius st ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Log(z) Riemann Surface
Log most often refers to: * Trunk (botany), the stem and main wooden axis of a tree, called logs when cut ** Logging, cutting down trees for logs ** Firewood, logs used for fuel ** Lumber or timber, converted from wood logs * Logarithm, in mathematics Log, LOG or LoG may also refer to: Arts, entertainment and media * ''Log'' (magazine), an architectural magazine * ''The Log'', a boating and fishing newspaper published by the Duncan McIntosh Company * Lamb of God (band) or LoG, an American metal band * The Log, an electric guitar by Les Paul * Log, a fictional product in ''The Ren & Stimpy Show'' * The League of Gentlemen or LoG, a British comedy show. Places * Log, Russia, the name of several places * Log, Slovenia, the name of several places Science and mathematics *Logarithm, a mathematical function * Log file, a computer file in which events are recorded * Laplacian of Gaussian or LoG, an algorithm used in digital image processing Other uses * Logbook A logbook (or ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Klein Bottle
In mathematics, the Klein bottle () is an example of a Orientability, non-orientable Surface (topology), surface; that is, informally, a one-sided surface which, if traveled upon, could be followed back to the point of origin while flipping the traveler upside down. More formally, the Klein bottle is a two-dimensional manifold on which one cannot define a normal vector at each point that varies continuous function, continuously over the whole manifold. Other related non-orientable surfaces include the Möbius strip and the real projective plane. While a Möbius strip is a surface with a Boundary (topology), boundary, a Klein bottle has no boundary. For comparison, a sphere is an orientable surface with no boundary. The Klein bottle was first described in 1882 by the mathematician Felix Klein. Construction The following square is a fundamental polygon of the Klein bottle. The idea is to 'glue' together the corresponding red and blue edges with the arrows matching, as in the diagr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Transition Map
In mathematics, particularly topology, an atlas is a concept used to describe a manifold. An atlas consists of individual ''charts'' that, roughly speaking, describe individual regions of the manifold. In general, the notion of atlas underlies the formal definition of a manifold and related structures such as vector bundles and other fiber bundles. Charts The definition of an atlas depends on the notion of a ''chart''. A chart for a topological space ''M'' is a homeomorphism \varphi from an open subset ''U'' of ''M'' to an open subset of a Euclidean space. The chart is traditionally recorded as the ordered pair (U, \varphi). When a coordinate system is chosen in the Euclidean space, this defines coordinates on U: the coordinates of a point P of U are defined as the coordinates of \varphi(P). The pair formed by a chart and such a coordinate system is called a local coordinate system, coordinate chart, coordinate patch, coordinate map, or local frame. Formal definition of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Homeomorphic
In mathematics and more specifically in topology, a homeomorphism ( from Greek roots meaning "similar shape", named by Henri Poincaré), also called topological isomorphism, or bicontinuous function, is a bijective and continuous function between topological spaces that has a continuous inverse function. Homeomorphisms are the isomorphisms in the category of topological spaces—that is, they are the mappings that preserve all the topological properties of a given space. Two spaces with a homeomorphism between them are called homeomorphic, and from a topological viewpoint they are the same. Very roughly speaking, a topological space is a geometric object, and a homeomorphism results from a continuous deformation of the object into a new shape. Thus, a square and a circle are homeomorphic to each other, but a sphere and a torus are not. However, this description can be misleading. Some continuous deformations do not produce homeomorphisms, such as the deformation of a li ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Neighbourhood (topology)
In topology and related areas of mathematics, a neighbourhood (or neighborhood) is one of the basic concepts in a topological space. It is closely related to the concepts of open set and interior. Intuitively speaking, a neighbourhood of a point is a set of points containing that point where one can move some amount in any direction away from that point without leaving the set. Definitions Neighbourhood of a point If X is a topological space and p is a point in X, then a neighbourhood of p is a subset V of X that includes an open set U containing p, p \in U \subseteq V \subseteq X. This is equivalent to the point p \in X belonging to the topological interior of V in X. The neighbourhood V need not be an open subset of X. When V is open (resp. closed, compact, etc.) in X, it is called an (resp. closed neighbourhood, compact neighbourhood, etc.). Some authors require neighbourhoods to be open, so it is important to note their conventions. A set that is a neighbourhood ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Open Unit Disk
In mathematics, the open unit disk (or disc) around ''P'' (where ''P'' is a given point in the plane), is the set of points whose distance from ''P'' is less than 1: :D_1(P) = \.\, The closed unit disk around ''P'' is the set of points whose distance from ''P'' is less than or equal to one: :\bar D_1(P)=\.\, Unit disks are special cases of disks and unit balls; as such, they contain the interior of the unit circle and, in the case of the closed unit disk, the unit circle itself. Without further specifications, the term ''unit disk'' is used for the open unit disk about the origin, D_1(0), with respect to the standard Euclidean metric. It is the interior of a circle of radius 1, centered at the origin. This set can be identified with the set of all complex numbers of absolute value less than one. When viewed as a subset of the complex plane (C), the unit disk is often denoted \mathbb. The open unit disk, the plane, and the upper half-plane The function :f(z)=\frac is a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Chart (topology)
In mathematics, particularly topology, an atlas is a concept used to describe a manifold. An atlas consists of individual ''charts'' that, roughly speaking, describe individual regions of the manifold. In general, the notion of atlas underlies the formal definition of a manifold and related structures such as vector bundles and other fiber bundles. Charts The definition of an atlas depends on the notion of a ''chart''. A chart for a topological space ''M'' is a homeomorphism \varphi from an open subset ''U'' of ''M'' to an open subset of a Euclidean space. The chart is traditionally recorded as the ordered pair (U, \varphi). When a coordinate system is chosen in the Euclidean space, this defines coordinates on U: the coordinates of a point P of U are defined as the coordinates of \varphi(P). The pair formed by a chart and such a coordinate system is called a local coordinate system, coordinate chart, coordinate patch, coordinate map, or local frame. Formal definition of atl ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hausdorff Space
In topology and related branches of mathematics, a Hausdorff space ( , ), T2 space or separated space, is a topological space where distinct points have disjoint neighbourhoods. Of the many separation axioms that can be imposed on a topological space, the "Hausdorff condition" (T2) is the most frequently used and discussed. It implies the uniqueness of limits of sequences, nets, and filters. Hausdorff spaces are named after Felix Hausdorff, one of the founders of topology. Hausdorff's original definition of a topological space (in 1914) included the Hausdorff condition as an axiom. Definitions Points x and y in a topological space X can be '' separated by neighbourhoods'' if there exists a neighbourhood U of x and a neighbourhood V of y such that U and V are disjoint (U\cap V=\varnothing). X is a Hausdorff space if any two distinct points in X are separated by neighbourhoods. This condition is the third separation axiom (after T0 and T1), which is why Hausdorff ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Complex Dimension
In mathematics, complex dimension usually refers to the dimension of a complex manifold or a complex algebraic variety. These are spaces in which the local neighborhoods of points (or of non-singular points in the case of a variety) are modeled on a Cartesian product of the form \mathbb^d for some d, and the complex dimension is the exponent d in this product. Because \mathbb can in turn be modeled by \mathbb^2, a space with complex dimension d will have real dimension 2d. That is, a smooth manifold of complex dimension d has real dimension 2d; and a complex algebraic variety of complex dimension d, away from any singular point, will also be a smooth manifold of real dimension 2d. However, for a real algebraic variety (that is a variety defined by equations with real coefficients), its dimension refers commonly to its complex dimension, and its real dimension refers to the maximum of the dimensions of the manifolds contained in the set of its real points. The real dimension is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Connected Space
In topology and related branches of mathematics, a connected space is a topological space that cannot be represented as the union (set theory), union of two or more disjoint set, disjoint Empty set, non-empty open (topology), open subsets. Connectedness is one of the principal topological properties that distinguish topological spaces. A subset of a topological space X is a if it is a connected space when viewed as a Subspace topology, subspace of X. Some related but stronger conditions are #Path connectedness, path connected, Simply connected space, simply connected, and N-connected space, n-connected. Another related notion is Locally connected space, locally connected, which neither implies nor follows from connectedness. Formal definition A topological space X is said to be if it is the union of two disjoint non-empty open sets. Otherwise, X is said to be connected. A subset of a topological space is said to be connected if it is connected under its subspace topology. So ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Riemann–Roch Theorem
The Riemann–Roch theorem is an important theorem in mathematics, specifically in complex analysis and algebraic geometry, for the computation of the dimension of the space of meromorphic functions with prescribed zeros and allowed poles. It relates the complex analysis of a connected compact Riemann surface with the surface's purely topological genus ''g'', in a way that can be carried over into purely algebraic settings. Initially proved as Riemann's inequality by , the theorem reached its definitive form for Riemann surfaces after work of Riemann's short-lived student . It was later generalized to algebraic curves, to higher-dimensional varieties and beyond. Preliminary notions A Riemann surface X is a topological space that is locally homeomorphic to an open subset of \Complex, the set of complex numbers. In addition, the transition maps between these open subsets are required to be holomorphic. The latter condition allows one to transfer the notions and methods of c ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]