Hyperbolic-orthogonal
In geometry, the relation of hyperbolic orthogonality between two lines separated by the asymptotes of a hyperbola is a concept used in special relativity to define simultaneous events. Two events will be simultaneous when they are on a line hyperbolically orthogonal to a particular timeline. This dependence on a certain timeline is determined by velocity, and is the basis for the relativity of simultaneity. Furthermore, keeping time and space axes hyperbolically orthogonal, as in Minkowski space, gives a constant result when measurements are taken of the speed of light. Geometry Two lines are hyperbolic orthogonal when they are reflections of each other over the asymptote of a given hyperbola. Two particular hyperbolas are frequently used in the plane: The relation of hyperbolic orthogonality actually applies to classes of parallel lines in the plane, where any particular line can represent the class. Thus, for a given hyperbola and asymptote ''A'', a pair of lines (''a'', ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Hyperbolic Number
In algebra, a split-complex number (or hyperbolic number, also perplex number, double number) is based on a hyperbolic unit satisfying j^2=1, where j \neq \pm 1. A split-complex number has two real number components and , and is written z=x+yj . The ''conjugate'' of is z^*=x-yj. Since j^2=1, the product of a number with its conjugate is N(z) := zz^* = x^2 - y^2, an isotropic quadratic form. The collection of all split-complex numbers z=x+yj for forms an algebra over the field of real numbers. Two split-complex numbers and have a product that satisfies N(wz)=N(w)N(z). This composition of over the algebra product makes a composition algebra. A similar algebra based on and component-wise operations of addition and multiplication, where is the quadratic form on also forms a quadratic space. The ring isomorphism \begin D &\to \mathbb^2 \\ x + yj &\mapsto (x - y, x + y) \end is an isometry of quadratic spaces. Split-complex numbers have many other names; se ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Orthogonality And Rotation
In mathematics, orthogonality is the generalization of the geometric notion of ''perpendicularity''. Although many authors use the two terms ''perpendicular'' and ''orthogonal'' interchangeably, the term ''perpendicular'' is more specifically used for lines and planes that intersect to form a right angle, whereas ''orthogonal'' is used in generalizations, such as ''orthogonal vectors'' or ''orthogonal curves''. ''Orthogonality'' is also used with various meanings that are often weakly related or not related at all with the mathematical meanings. Etymology The word comes from the Ancient Greek ('), meaning "upright", and ('), meaning "angle". The Ancient Greek (') and Classical Latin ' originally denoted a rectangle. Later, they came to mean a right triangle. In the 12th century, the post-classical Latin word ''orthogonalis'' came to mean a right angle or something related to a right angle. Mathematics Physics Optics In optics, polarization states are said to be orthog ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
World Line
The world line (or worldline) of an object is the path that an object traces in 4-dimensional spacetime. It is an important concept of modern physics, and particularly theoretical physics. The concept of a "world line" is distinguished from concepts such as an "orbit" or a " trajectory" (e.g., a planet's ''orbit in space'' or the ''trajectory'' of a car on a road) by inclusion of the dimension ''time'', and typically encompasses a large area of spacetime wherein paths which are straight perceptually are rendered as curves in spacetime to show their (relatively) more absolute position states—to reveal the nature of special relativity or gravitational interactions. The idea of world lines was originated by physicists and was pioneered by Hermann Minkowski. The term is now used most often in the context of relativity theories (i.e., special relativity and general relativity). Usage in physics A world line of an object (generally approximated as a point in space, e.g., a p ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Conjugate Diameters
In geometry, two diameters of a conic section are said to be conjugate if each chord (geometry), chord parallel (geometry), parallel to one diameter is bisection, bisected by the other diameter. For example, two diameters of a circle are conjugate if and only if they are perpendicular. Of ellipse For an ellipse, two diameters are conjugate if and only if the tangent line to the ellipse at an endpoint of one diameter is parallel to the other diameter. Each pair of conjugate diameters of an ellipse has a corresponding tangent parallelogram, sometimes called a bounding parallelogram (skewed compared to a bounding rectangle). In his manuscript De motu corporum in gyrum, and in the 'Philosophiæ Naturalis Principia Mathematica, Principia', Isaac Newton cites as a lemma (mathematics), lemma proved by previous authors that all (bounding) parallelograms for a given ellipse have the same area. It is possible to Compass and straightedge constructions, reconstruct an ellipse from any pai ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Projectively Extended Real Line
In real analysis, the projectively extended real line (also called the one-point compactification of the real line), is the extension of the set of the real numbers, \mathbb, by a point denoted . It is thus the set \mathbb\cup\ with the standard arithmetic operations extended where possible, and is sometimes denoted by \mathbb^* or \widehat. The added point is called the point at infinity, because it is considered as a neighbour of both ends of the real line. More precisely, the point at infinity is the limit of every sequence of real numbers whose absolute values are increasing and unbounded. The projectively extended real line may be identified with a real projective line in which three points have been assigned the specific values , and . The projectively extended real number line is distinct from the affinely extended real number line, in which and are distinct. Dividing by zero Unlike most mathematical models of numbers, this structure allows division by zero: : ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Conjugate Hyperbola
In geometry, a conjugate hyperbola to a given hyperbola shares the same asymptotes but lies in the opposite two sectors of the plane compared to the original hyperbola. A hyperbola and its conjugate may be constructed as conic sections obtained from an intersecting plane that meets tangent double cones sharing the same apex. Each cone has an axis, and the plane section is parallel to the plane formed by the axes. Using analytic geometry, the hyperbolas satisfy the symmetric equations :\frac - \frac = 1, with vertices (''a'',0) and (–''a'',0), and :\frac - \frac = -1 (which can also be written as \frac - \frac = 1), with vertices (0,''b'') and (0,–''b''). In case ''a'' = ''b'' they are rectangular hyperbolas, and a reflection of the plane in an asymptote exchanges the conjugates. Similarly, for a non-zero constant ''c'', the coordinate axes form the asymptotes of the conjugate pair xy = c^2 and xy = -c^2. History Apollonius of Perga introduced the conjugate hyperbola through ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Space And Time
In physics, spacetime, also called the space-time continuum, is a mathematical model that fuses the three dimensions of space and the one dimension of time into a single four-dimensional continuum. Spacetime diagrams are useful in visualizing and understanding relativistic effects, such as how different observers perceive ''where'' and ''when'' events occur. Until the turn of the 20th century, the assumption had been that the three-dimensional geometry of the universe (its description in terms of locations, shapes, distances, and directions) was distinct from time (the measurement of when events occur within the universe). However, space and time took on new meanings with the Lorentz transformation and special theory of relativity. In 1908, Hermann Minkowski presented a geometric interpretation of special relativity that fused time and the three spatial dimensions into a single four-dimensional continuum now known as Minkowski space. This interpretation proved vital to the ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Spacetime
In physics, spacetime, also called the space-time continuum, is a mathematical model that fuses the three dimensions of space and the one dimension of time into a single four-dimensional continuum. Spacetime diagrams are useful in visualizing and understanding relativistic effects, such as how different observers perceive ''where'' and ''when'' events occur. Until the turn of the 20th century, the assumption had been that the three-dimensional geometry of the universe (its description in terms of locations, shapes, distances, and directions) was distinct from time (the measurement of when events occur within the universe). However, space and time took on new meanings with the Lorentz transformation and special theory of relativity. In 1908, Hermann Minkowski presented a geometric interpretation of special relativity that fused time and the three spatial dimensions into a single four-dimensional continuum now known as Minkowski space. This interpretation proved vital t ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Hermann Minkowski
Hermann Minkowski (22 June 1864 – 12 January 1909) was a mathematician and professor at the University of Königsberg, the University of Zürich, and the University of Göttingen, described variously as German, Polish, Lithuanian-German, or Russian. He created and developed the geometry of numbers and elements of convex geometry, and used geometrical methods to solve problems in number theory, mathematical physics, and the theory of relativity. Minkowski is perhaps best known for his foundational work describing space and time as a four-dimensional space, now known as " Minkowski spacetime", which facilitated geometric interpretations of Albert Einstein's special theory of relativity (1905). Personal life and family Hermann Minkowski was born in the town of Aleksota, the Suwałki Governorate, the Kingdom of Poland, since 1864 part of the Russian Empire, to Lewin Boruch Minkowski, a merchant who subsidized the building of the choral synagogue in Kovno, and Rachel Taub ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Minkowski Space
In physics, Minkowski space (or Minkowski spacetime) () is the main mathematical description of spacetime in the absence of gravitation. It combines inertial space and time manifolds into a four-dimensional model. The model helps show how a spacetime interval between any two events is independent of the inertial frame of reference in which they are recorded. Mathematician Hermann Minkowski developed it from the work of Hendrik Lorentz, Henri Poincaré, and others said it "was grown on experimental physical grounds". Minkowski space is closely associated with Einstein's theories of special relativity and general relativity and is the most common mathematical structure by which special relativity is formalized. While the individual components in Euclidean space and time might differ due to length contraction and time dilation, in Minkowski spacetime, all frames of reference will agree on the total interval in spacetime between events.This makes spacetime distance an inva ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |