Held Group
In the area of modern algebra known as group theory, the Held group ''He'' is a sporadic simple group of order : 4,030,387,200 = 21033527317 : ≈ 4. History ''He'' is one of the 26 sporadic groups and was found by during an investigation of simple groups containing an involution whose centralizer is an extension of the extra special group 21+6 by the linear group L3(2), which is the same involution centralizer as the Mathieu group M24. A second such group is the linear group L5(2). The Held group is the third possibility, and its construction was completed by John McKay and Graham Higman. In all of these groups, the extension splits. The outer automorphism group has order 2 and the Schur multiplier is trivial. Representations The smallest faithful complex representation has dimension 51; there are two such representations that are duals of each other. It centralizes an element of order 7 in the Monster group. As a result the prime 7 plays a spec ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Group Theory
In abstract algebra, group theory studies the algebraic structures known as group (mathematics), groups. The concept of a group is central to abstract algebra: other well-known algebraic structures, such as ring (mathematics), rings, field (mathematics), fields, and vector spaces, can all be seen as groups endowed with additional operation (mathematics), operations and axioms. Groups recur throughout mathematics, and the methods of group theory have influenced many parts of algebra. Linear algebraic groups and Lie groups are two branches of group theory that have experienced advances and have become subject areas in their own right. Various physical systems, such as crystals and the hydrogen atom, and Standard Model, three of the four known fundamental forces in the universe, may be modelled by symmetry groups. Thus group theory and the closely related representation theory have many important applications in physics, chemistry, and materials science. Group theory is also cen ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Vertex Operator Algebra
In mathematics, a vertex operator algebra (VOA) is an algebraic structure that plays an important role in two-dimensional conformal field theory and string theory. In addition to physical applications, vertex operator algebras have proven useful in purely mathematical contexts such as monstrous moonshine and the geometric Langlands correspondence. The related notion of vertex algebra was introduced by Richard Borcherds in 1986, motivated by a construction of an infinite-dimensional Lie algebra due to Igor Frenkel. In the course of this construction, one employs a Fock space that admits an action of vertex operators attached to elements of a unimodular lattice, lattice. Borcherds formulated the notion of vertex algebra by axiomatizing the relations between the lattice vertex operators, producing an algebraic structure that allows one to construct new Lie algebras by following Frenkel's method. The notion of vertex operator algebra was introduced as a modification of the notion ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Dedekind Eta Function
In mathematics, the Dedekind eta function, named after Richard Dedekind, is a modular form of weight 1/2 and is a function defined on the upper half-plane of complex numbers, where the imaginary part is positive. It also occurs in bosonic string theory. Definition For any complex number with , let ; then the eta function is defined by, :\eta(\tau) = e^\frac \prod_^\infty \left(1-e^\right) = q^\frac \prod_^\infty \left(1 - q^n\right) . Raising the eta equation to the 24th power and multiplying by gives :\Delta(\tau)=(2\pi)^\eta^(\tau) where is the modular discriminant. The presence of 24 can be understood by connection with other occurrences, such as in the 24-dimensional Leech lattice. The eta function is holomorphic on the upper half-plane but cannot be continued analytically beyond it. The eta function satisfies the functional equations :\begin \eta(\tau+1) &=e^\frac\eta(\tau),\\ \eta\left(-\frac\right) &= \sqrt\, \eta(\tau).\, \end In the second equation the b ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Monstrous Moonshine
In mathematics, monstrous moonshine, or moonshine theory, is the unexpected connection between the monster group ''M'' and modular functions, in particular the ''j'' function. The initial numerical observation was made by John McKay in 1978, and the phrase was coined by John Conway and Simon P. Norton in 1979. The monstrous moonshine is now known to be underlain by a vertex operator algebra called the moonshine module (or monster vertex algebra) constructed by Igor Frenkel, James Lepowsky, and Arne Meurman in 1988, which has the monster group as its group of symmetries. This vertex operator algebra is commonly interpreted as a structure underlying a two-dimensional conformal field theory, allowing physics to form a bridge between two mathematical areas. The conjectures made by Conway and Norton were proven by Richard Borcherds for the moonshine module in 1992 using the no-ghost theorem from string theory and the theory of vertex operator algebras and generalize ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Fischer Groups
In the area of modern algebra known as group theory, the Fischer groups are the three sporadic simple groups Fi22, Fi23 and Fi24 introduced by . 3-transposition groups The Fischer groups are named after Bernd Fischer who discovered them while investigating 3-transposition groups. These are groups ''G'' with the following properties: * ''G'' is generated by a conjugacy class of elements of order 2, called 'Fischer transpositions' or 3-transpositions. * The product of any two distinct transpositions has order 2 or 3. The typical example of a 3-transposition group is a symmetric group, where the Fischer transpositions are genuinely transpositions. The symmetric group Sn can be generated by transpositions: (12), (23), ..., . Fischer was able to classify 3-transposition groups that satisfy certain extra technical conditions. The groups he found fell mostly into several infinite classes (besides symmetric groups: certain classes of symplectic, unitary, and orthogonal groups) ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Group Action
In mathematics, a group action of a group G on a set S is a group homomorphism from G to some group (under function composition) of functions from S to itself. It is said that G acts on S. Many sets of transformations form a group under function composition; for example, the rotations around a point in the plane. It is often useful to consider the group as an abstract group, and to say that one has a group action of the abstract group that consists of performing the transformations of the group of transformations. The reason for distinguishing the group from the transformations is that, generally, a group of transformations of a structure acts also on various related structures; for example, the above rotation group also acts on triangles by transforming triangles into triangles. If a group acts on a structure, it will usually also act on objects built from that structure. For example, the group of Euclidean isometries acts on Euclidean space and also on the figures dra ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Fischer Group Fi24
In the area of modern algebra known as group theory, the Fischer group ''Fi24'' or ''F24'' or ''F3+'' is a sporadic simple group of order : 1,255,205,709,190,661,721,292,800 : = 22131652731113172329 : ≈ 1. History and properties ''Fi24'' is one of the 26 sporadic groups and is the largest of the three Fischer groups introduced by while investigating 3-transposition groups. It is the 3rd largest of the sporadic groups (after the Monster group and Baby Monster group). The outer automorphism group has order 2, and the Schur multiplier has order 3. The automorphism group is a 3-transposition group Fi24, containing the simple group with index 2. The centralizer of an element of order 3 in the monster group is a triple cover of the sporadic simple group ''Fi24'', as a result of which the prime 3 plays a special role in its theory. Representations The centralizer of an element of order 3 in the monster group In the area of abstract algebra known as ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Frobenius Group
In mathematics, a Frobenius group is a transitive permutation group on a finite set, such that no non-trivial element fixes more than one point and some non-trivial element fixes a point. They are named after F. G. Frobenius. Structure Suppose ''G'' is a Frobenius group consisting of permutations of a set ''X''. A subgroup ''H'' of ''G'' fixing a point of ''X'' is called a Frobenius complement. The identity element together with all elements not in any conjugate of ''H'' form a normal subgroup called the Frobenius kernel ''K''. (This is a theorem due to ; there is still no proof of this theorem that does not use character theory, although see .) The Frobenius group ''G'' is the semidirect product of ''K'' and ''H'': :G=K\rtimes H. Both the Frobenius kernel and the Frobenius complement have very restricted structures. proved that the Frobenius kernel ''K'' is a nilpotent group. If ''H'' has even order then ''K'' is abelian. The Frobenius complement ''H'' has the property th ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Graph (discrete Mathematics)
In discrete mathematics, particularly in graph theory, a graph is a structure consisting of a Set (mathematics), set of objects where some pairs of the objects are in some sense "related". The objects are represented by abstractions called ''Vertex (graph theory), vertices'' (also called ''nodes'' or ''points'') and each of the related pairs of vertices is called an ''edge'' (also called ''link'' or ''line''). Typically, a graph is depicted in diagrammatic form as a set of dots or circles for the vertices, joined by lines or curves for the edges. The edges may be directed or undirected. For example, if the vertices represent people at a party, and there is an edge between two people if they shake hands, then this graph is undirected because any person ''A'' can shake hands with a person ''B'' only if ''B'' also shakes hands with ''A''. In contrast, if an edge from a person ''A'' to a person ''B'' means that ''A'' owes money to ''B'', then this graph is directed, because owing mon ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Monster Group
In the area of abstract algebra known as group theory, the monster group M (also known as the Fischer–Griess monster, or the friendly giant) is the largest sporadic simple group; it has order : : = 2463205976112133171923293141475971 : ≈ . The finite simple groups have been completely classified. Every such group belongs to one of 18 countably infinite families or is one of 26 sporadic groups that do not follow such a systematic pattern. The monster group contains 20 sporadic groups (including itself) as subquotients. Robert Griess, who proved the existence of the monster in 1982, has called those 20 groups the ''happy family'', and the remaining six exceptions '' pariahs''. It is difficult to give a good constructive definition of the monster because of its complexity. Martin Gardner wrote a popular account of the monster group in his June 1980 Mathematical Games column in ''Scientific American''. History The monster was predi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Sporadic Simple Group
In the mathematical classification of finite simple groups, there are a number of groups which do not fit into any infinite family. These are called the sporadic simple groups, or the sporadic finite groups, or just the sporadic groups. A simple group is a group ''G'' that does not have any normal subgroups except for the trivial group and ''G'' itself. The mentioned classification theorem states that the list of finite simple groups consists of 18 countably infinite families plus 26 exceptions that do not follow such a systematic pattern. These 26 exceptions are the sporadic groups. The Tits group is sometimes regarded as a sporadic group because it is not strictly a group of Lie type, in which case there would be 27 sporadic groups. The monster group, or ''friendly giant'', is the largest of the sporadic groups, and all but six of the other sporadic groups are subquotients of it. Names Five of the sporadic groups were discovered by Émile Mathieu in the 1860s and the ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |