HOME





Hawaiian Earring
In mathematics, the Hawaiian earring \mathbb is the topological space defined by the union of circles in the Euclidean plane \R^2 with center \left(\tfrac,0\right) and radius \tfrac for n = 1, 2, 3, \ldots endowed with the subspace topology: \mathbb=\bigcup_^\left\. The space \mathbb is homeomorphic to the one-point compactification of the union of a countable family of disjoint open intervals. The Hawaiian earring is a one-dimensional, compact, locally path-connected metrizable space. Although \mathbb is locally homeomorphic to \R at all non-origin points, \mathbb is not semi-locally simply connected at (0,0). Therefore, \mathbb does not have a simply connected covering space and is usually given as the simplest example of a space with this complication. The Hawaiian earring looks very similar to the wedge sum of countably infinitely many circles; that is, the rose with infinitely many petals, but these two spaces are not homeomorphic. The difference between their topolo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Fundamental Group
In the mathematics, mathematical field of algebraic topology, the fundamental group of a topological space is the group (mathematics), group of the equivalence classes under homotopy of the Loop (topology), loops contained in the space. It records information about the basic shape, or holes, of the topological space. The fundamental group is the first and simplest homotopy group. The fundamental group is a homotopy invariant—topological spaces that are homotopy equivalent (or the stronger case of homeomorphic) have Group isomorphism, isomorphic fundamental groups. The fundamental group of a topological space X is denoted by \pi_1(X). Intuition Start with a space (for example, a surface (mathematics), surface), and some point in it, and all the loops both starting and ending at this point—path (topology), paths that start at this point, wander around and eventually return to the starting point. Two loops can be combined in an obvious way: travel along the first loop, then alo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Winding Number
In mathematics, the winding number or winding index of a closed curve in the plane (mathematics), plane around a given point (mathematics), point is an integer representing the total number of times that the curve travels counterclockwise around the point, i.e., the curve's number of turns. For certain open plane curves, the number of turns may be a non-integer. The winding number depends on the curve orientation, orientation of the curve, and it is negative number, negative if the curve travels around the point clockwise. Winding numbers are fundamental objects of study in algebraic topology, and they play an important role in vector calculus, complex analysis, geometric topology, differential geometry, and physics (such as in string theory). Intuitive description Suppose we are given a closed, oriented curve in the ''xy'' plane. We can imagine the curve as the path of motion of some object, with the orientation indicating the direction in which the object moves. Then the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Shape Theory (mathematics)
Shape theory is a branch of topology that provides a more global view of the topological spaces than homotopy theory. The two coincide on compacta dominated homotopically by finite polyhedra. Shape theory associates with the Čech homology theory while homotopy theory associates with the singular homology theory. Background Shape theory was invented and published by D. E. Christie in 1944; it was reinvented, further developed and promoted by the Polish mathematician Karol Borsuk in 1968. Actually, the name ''shape theory'' was coined by Borsuk. Warsaw circle Borsuk lived and worked in Warsaw, hence the name of one of the fundamental examples of the area, the Warsaw circle.The Polish Circle and some of its unusual properties
. Math 205B-2012 Lecture Notes, University of California Riverside. Retrieved ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Baer–Specker Group
In mathematics, in the field of group theory, the Baer–Specker group, or Specker group, named after Reinhold Baer and Ernst Specker, is an example of an infinite abelian group which is a building block in the structure theory of such groups. Definition The Baer–Specker group is the group ''B'' = ZN of all integer sequences with componentwise addition, that is, the direct product of countably infinite In mathematics, a set is countable if either it is finite or it can be made in one to one correspondence with the set of natural numbers. Equivalently, a set is ''countable'' if there exists an injective function from it into the natural numbe ...ly many copies of Z. It can equivalently be described as the additive group of formal power series with integer coefficients. Properties Reinhold Baer proved in 1937 that this group is ''not'' free abelian group, free abelian; Specker proved in 1950 that every countable subgroup of ''B'' is free abelian. The group of group homom ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Infinite Cyclic Group
In abstract algebra, a cyclic group or monogenous group is a group, denoted C_n (also frequently \Z_n or Z_n, not to be confused with the commutative ring of -adic numbers), that is generated by a single element. That is, it is a set of invertible elements with a single associative binary operation, and it contains an element g such that every other element of the group may be obtained by repeatedly applying the group operation to g or its inverse. Each element can be written as an integer power of g in multiplicative notation, or as an integer multiple of g in additive notation. This element g is called a '' generator'' of the group. Every infinite cyclic group is isomorphic to the additive group \Z, the integers. Every finite cyclic group of order n is isomorphic to the additive group of Z/''n''Z, the integers modulo n. Every cyclic group is an abelian group (meaning that its group operation is commutative), and every finitely generated abelian group is a direct product of c ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Direct Product Of Groups
In mathematics, specifically in group theory, the direct product is an operation that takes two groups and and constructs a new group, usually denoted . This operation is the group-theoretic analogue of the Cartesian product of sets and is one of several important notions of direct product in mathematics. In the context of abelian groups, the direct product is sometimes referred to as the direct sum, and is denoted G \oplus H. Direct sums play an important role in the classification of abelian groups: according to the fundamental theorem of finite abelian groups, every finite abelian group can be expressed as the direct sum of cyclic groups. Definition Given groups (with operation ) and (with operation ), the direct product is defined as follows: The resulting algebraic object satisfies the axioms for a group. Specifically: ;Associativity: The binary operation on is associative. ;Identity: The direct product has an identity element, namely , where is the identi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Singular Homology Group
In algebraic topology, singular homology refers to the study of a certain set of algebraic invariants of a topological space X, the so-called homology groups H_n(X). Intuitively, singular homology counts, for each dimension n, the n-dimensional holes of a space. Singular homology is a particular example of a homology theory, which has now grown to be a rather broad collection of theories. Of the various theories, it is perhaps one of the simpler ones to understand, being built on fairly concrete constructions (see also the related theory simplicial homology). In brief, singular homology is constructed by taking maps of the standard -simplex to a topological space, and composing them into formal sums, called singular chains. The boundary operation – mapping each n-dimensional simplex to its (n-1)-dimensional boundary – induces the singular chain complex. The singular homology is then the homology of the chain complex. The resulting homology groups are the same ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Abelianisation
In mathematics, more specifically in abstract algebra, the commutator subgroup or derived subgroup of a group is the subgroup generated by all the commutators of the group. The commutator subgroup is important because it is the smallest normal subgroup such that the quotient group of the original group by this subgroup is abelian. In other words, G/N is abelian if and only if N contains the commutator subgroup of G. So in some sense it provides a measure of how far the group is from being abelian; the larger the commutator subgroup is, the "less abelian" the group is. Commutators For elements g and h of a group ''G'', the commutator of g and h is ,h= g^h^gh. The commutator ,h/math> is equal to the identity element ''e'' if and only if gh = hg , that is, if and only if g and h commute. In general, gh = hg ,h/math>. However, the notation is somewhat arbitrary and there is a non-equivalent variant definition for the commutator that has the inverses on the right hand side o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Katsuya Eda
is a mathematician, currently a professor at Waseda University. His research centers on set theory and its applications, particularly in algebraic topology. He has done a great deal of work on the fundamental group of the Hawaiian earring In mathematics, the Hawaiian earring \mathbb is the topological space defined by the union of circles in the Euclidean plane \R^2 with center \left(\tfrac,0\right) and radius \tfrac for n = 1, 2, 3, \ldots endowed with the subspace topology: ... and related subjects. External links Eda's home page at Waseda University Living people 21st-century Japanese mathematicians Set theorists Topologists Academic staff of Waseda University Year of birth missing (living people) Place of birth missing (living people) {{Asia-mathematician-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Infinite Product
In mathematics, for a sequence of complex numbers ''a''1, ''a''2, ''a''3, ... the infinite product : \prod_^ a_n = a_1 a_2 a_3 \cdots is defined to be the limit of the partial products ''a''1''a''2...''a''''n'' as ''n'' increases without bound. The product is said to '' converge'' when the limit exists and is not zero. Otherwise the product is said to ''diverge''. A limit of zero is treated specially in order to obtain results analogous to those for infinite sums. Some sources allow convergence to 0 if there are only a finite number of zero factors and the product of the non-zero factors is non-zero, but for simplicity we will not allow that here. If the product converges, then the limit of the sequence ''a''''n'' as ''n'' increases without bound must be 1, while the converse is in general not true. The best known examples of infinite products are probably some of the formulae for π, such as the following two products, respectively by Viète ( Viète's formula, the first ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Inverse Limit
In mathematics, the inverse limit (also called the projective limit) is a construction that allows one to "glue together" several related objects, the precise gluing process being specified by morphisms between the objects. Thus, inverse limits can be defined in any category although their existence depends on the category that is considered. They are a special case of the concept of limit in category theory. By working in the dual category, that is by reversing the arrows, an inverse limit becomes a direct limit or ''inductive limit'', and a ''limit'' becomes a colimit. Formal definition Algebraic objects We start with the definition of an inverse system (or projective system) of groups and homomorphisms. Let (I, \leq) be a directed poset (not all authors require ''I'' to be directed). Let (''A''''i'')''i''∈''I'' be a family of groups and suppose we have a family of homomorphisms f_: A_j \to A_i for all i \leq j (note the order) with the following properties: # f ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]