HOME





Harvey Friedman (mathematician)
Harvey Friedman (born 23 September 1948)Handbook of Philosophical Logic, , p. 38 is an American mathematical logician at Ohio State University in Columbus, Ohio. He has worked on reverse mathematics, a project intended to derive the axioms of mathematics from the theorems considered to be necessary. In recent years, this has advanced to a study of Boolean relation theory, which attempts to justify large cardinal axioms by demonstrating their necessity for deriving certain propositions considered "concrete". Biography Friedman is the brother of mathematician Sy Friedman. Friedman earned his Ph.D. from the Massachusetts Institute of Technology in 1967, at age 19, with a dissertation on ''Subsystems of Analysis''. His advisor was Gerald Sacks. Friedman received the Alan T. Waterman Award in 1984. He also assumed the title of Visiting Scientist at IBM. He delivered the Tarski Lectures in 2007. In 1967, Friedman was listed in the ''Guinness Book of World Records'' for being ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Philosophy
Philosophy ('love of wisdom' in Ancient Greek) is a systematic study of general and fundamental questions concerning topics like existence, reason, knowledge, Value (ethics and social sciences), value, mind, and language. It is a rational and critical inquiry that reflects on its methods and assumptions. Historically, many of the individual sciences, such as physics and psychology, formed part of philosophy. However, they are considered separate academic disciplines in the modern sense of the term. Influential traditions in the history of philosophy include Western philosophy, Western, Islamic philosophy, Arabic–Persian, Indian philosophy, Indian, and Chinese philosophy. Western philosophy originated in Ancient Greece and covers a wide area of philosophical subfields. A central topic in Arabic–Persian philosophy is the relation between reason and revelation. Indian philosophy combines the Spirituality, spiritual problem of how to reach Enlightenment in Buddhism, enlighten ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


La Repubblica
(; English: "the Republic") is an Italian daily general-interest newspaper with an average circulation of 151,309 copies in May 2023. It was founded in 1976 in Rome by Gruppo Editoriale L'Espresso (now known as GEDI Gruppo Editoriale) and led by Eugenio Scalfari, Carlo Caracciolo, and Arnoldo Mondadori Editore as a leftist newspaper, which proclaimed itself a "newspaper-party" (). During the early years of , its political views and readership ranged from the reformist left to the extraparliamentary left. Into the 21st century, it is identified with centre-left politics, and was known for its anti- Berlusconism, and Silvio Berlusconi's personal scorn for the paper. In April 2020, the paper was acquired by the GEDI Gruppo Editoriale of John Elkann and the Agnelli family, who is also the founder and owner of . Maurizio Molinari, the then editor of , was appointed as 's editor in place of ; this prompted the resignation of several journalists opposed to this change. Un ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Nautilus (science Magazine)
''Nautilus'' is an American popular science magazine featuring journalism, essays, graphic narratives, fiction, and criticism. It covers most areas of science, and related topics in philosophy, technology, and history. ''Nautilus'' is published six times annually, with some of the print issues focusing on a selected theme, which also appear on its website. Issue themes have included human uniqueness, time, uncertainty, genius, mergers & acquisitions, creativity, consciousness, and reality, among many others. Reception In ''Nautilus'' launch year (2013), it was cited as one of ''Library Journal's'' Ten Best New Magazines Launched; was named one of the World's Best-Designed news sites by the Society for News Design; received an honorary mention as one of RealClearScience's top science news sites; and received three awards from FOLIO: magazine, including Best Consumer Website and Best Full Issue. In 2014, the magazine won a Webby Award for best science website and was nominated ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Conference Papers
A conference is a meeting, often lasting a few days, which is organized on a particular subject, or to bring together people who have a common interest. Conferences can be used as a form of group decision-making, although discussion, not always decisions, is the primary purpose of conferences. The term derives from the word ''confer''. History The first known use of "conference" appears in 1527, meaning "a meeting of two or more persons for discussing matters of common concern". It came from the word ''confer'', which means "to compare views or take counsel". However the idea of a conference far predates the word. Arguably, as long as there have been people, there have been meetings and discussions between people. Evidence of ancient forms of conference can be seen in archaeological ruins of Common area, common areas where people would gather to discuss shared interests such as "hunting plans, wartime activities, negotiations for peace or the organisation of tribal celebrations ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Peer-reviewed Article
Peer review is the evaluation of work by one or more people with similar competencies as the producers of the work (peers). It functions as a form of self-regulation by qualified members of a profession within the relevant field. Peer review methods are used to maintain quality standards, improve performance, and provide credibility. In academia, scholarly peer review is often used to determine an academic paper's suitability for publication. Peer review can be categorized by the type and by the field or profession in which the activity occurs, e.g., medical peer review. It can also be used as a teaching tool to help students improve writing assignments. Henry Oldenburg (1619–1677) was a German-born British philosopher who is seen as the 'father' of modern scientific peer review. It developed over the following centuries with, for example, the journal ''Nature'' making it standard practice in 1973. The term "peer review" was first used in the early 1970s. A monument to peer re ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


ZbMATH Open
zbMATH Open, formerly Zentralblatt MATH, is a major reviewing service providing reviews and abstracts for articles in pure and applied mathematics, produced by the Berlin office of FIZ Karlsruhe – Leibniz Institute for Information Infrastructure GmbH. Editors are the European Mathematical Society, FIZ Karlsruhe, and the Heidelberg Academy of Sciences. zbMATH is distributed by Springer Science+Business Media. It uses the Mathematics Subject Classification codes for organising reviews by topic. History Mathematicians Richard Courant, Otto Neugebauer, and Harald Bohr, together with the publisher Ferdinand Springer, took the initiative for a new mathematical reviewing journal. Harald Bohr worked in Copenhagen. Courant and Neugebauer were professors at the University of Göttingen. At that time, Göttingen was considered one of the central places for mathematical research, having appointed mathematicians like David Hilbert, Hermann Minkowski, Carl Runge, and Felix Klein, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Axiomatic System
In mathematics and logic, an axiomatic system is a set of formal statements (i.e. axioms) used to logically derive other statements such as lemmas or theorems. A proof within an axiom system is a sequence of deductive steps that establishes a new statement as a consequence of the axioms. An axiom system is called complete with respect to a property if every formula with the property can be derived using the axioms. The more general term theory is at times used to refer to an axiomatic system and all its derived theorems. In its pure form, an axiom system is effectively a syntactic construct and does not by itself refer to (or depend on) a formal structure, although axioms are often defined for that purpose. The more modern field of model theory refers to mathematical structures. The relationship between an axiom systems and the models that correspond to it is often a major issue of interest. Properties Four typical properties of an axiom system are consistency, relativ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Analysis (mathematics)
Analysis is the branch of mathematics dealing with continuous functions, limits, and related theories, such as differentiation, integration, measure, infinite sequences, series, and analytic functions. These theories are usually studied in the context of real and complex numbers and functions. Analysis evolved from calculus, which involves the elementary concepts and techniques of analysis. Analysis may be distinguished from geometry; however, it can be applied to any space of mathematical objects that has a definition of nearness (a topological space) or specific distances between objects (a metric space). History Ancient Mathematical analysis formally developed in the 17th century during the Scientific Revolution, but many of its ideas can be traced back to earlier mathematicians. Early results in analysis were implicitly present in the early days of ancient Greek mathematics. For instance, an infinite geometric sum is implicit in Zeno's paradox of the d ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


International Congress Of Mathematicians
The International Congress of Mathematicians (ICM) is the largest conference for the topic of mathematics. It meets once every four years, hosted by the International Mathematical Union (IMU). The Fields Medals, the IMU Abacus Medal (known before 2022 as the Nevanlinna Prize), the Carl Friedrich Gauss Prize, Gauss Prize, and the Chern Medal are awarded during the congress's opening ceremony. Each congress is memorialized by a printed set of Proceedings recording academic papers based on invited talks intended to be relevant to current topics of general interest. Being List of International Congresses of Mathematicians Plenary and Invited Speakers, invited to talk at the ICM has been called "the equivalent ... of an induction to a hall of fame". History German mathematicians Felix Klein and Georg Cantor are credited with putting forward the idea of an international congress of mathematicians in the 1890s.A. John Coleman"Mathematics without borders": a book review. ''CMS Notes'' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

List Of International Congresses Of Mathematicians Plenary And Invited Speakers
This is a list of International Congresses of Mathematicians Plenary and Invited Speakers. Being invited to talk at an International Congress of Mathematicians has been called "the equivalent, in this community, of an induction to a hall of fame." The current list of Plenary and Invited Speakers presented here is based on the ICM's post-WW II terminology, in which the one-hour speakers in the morning sessions are called "Plenary Speakers" and the other speakers (in the afternoon sessions) whose talks are included in the ICM published proceedings are called "Invited Speakers". In the pre-WW II congresses the Plenary Speakers were called "Invited Speakers". By congress year 1897, Zürich *Jules Andrade *Léon Autonne *Émile Borel *Nikolai Bugaev *Francesco Brioschi *Hermann Brunn *Cesare Burali-Forti *Charles Jean de la Vallée Poussin *Gustaf Eneström *Federigo Enriques *Gino Fano *Zoel García de Galdeano *Francesco Gerbaldi *Paul Gordan *Jacques Hadamard *Adolf Hurwitz *Felix ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Friedman's Grand Conjecture
In proof theory, a branch of mathematical logic, elementary function arithmetic (EFA), also called elementary arithmetic and exponential function arithmetic, is the system of arithmetic with the usual elementary properties of 0, 1, +, ×, x^y, together with induction for formulas with bounded quantifiers. EFA is a very weak logical system, whose proof theoretic ordinal is \omega^3, but still seems able to prove much of ordinary mathematics that can be stated in the language of first-order arithmetic. Definition EFA is a system in first order logic (with equality). Its language contains: *two constants 0, 1, *three binary operations +, \times, \textrm, with \textrm(x,y) usually written as x^y, *a binary relation symbol < (This is not really necessary as it can be written in terms of the other operations and is sometimes omitted, but is convenient for defining bounded quantifiers). Bounded quantifiers are those of the form \forall(x < y)
[...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]