HOME





H-object
In mathematics, specifically homotopical algebra, an H-object is a categorical generalization of an H-space, which can be defined in any category \mathcal with a product \times and an initial object *. These are useful constructions because they help export some of the ideas from algebraic topology and homotopy theory into other domains, such as in commutative algebra and algebraic geometry. Definition In a category \mathcal with a product \times and initial object *, an H-object is an object X \in \text(\mathcal) together with an operation called multiplication together with a two sided identity. If we denote u_X: X \to *, the structure of an H-object implies there are maps\begin \varepsilon&: * \to X \\ \mu&: X\times X \to X \endwhich have the commutation relations\mu(\varepsilon\circ u_X, id_X) = \mu(id_X,\varepsilon\circ u_X) = id_X Examples Magmas All magmas with units are secretly H-objects in the category \textbf. H-spaces Another example of H-objects are H-s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


H-space
In mathematics, an H-space is a homotopy-theoretic version of a generalization of the notion of topological group, in which the axioms on associativity and inverses are removed. Definition An H-space consists of a topological space , together with an element of and a continuous map , such that and the maps and are both homotopic to the identity map through maps sending to . This may be thought of as a pointed topological space together with a continuous multiplication for which the basepoint is an identity element up to basepoint-preserving homotopy. One says that a topological space is an H-space if there exists and such that the triple is an H-space as in the above definition. Alternatively, an H-space may be defined without requiring homotopies to fix the basepoint , or by requiring to be an exact identity, without any consideration of homotopy. In the case of a CW complex, all three of these definitions are in fact equivalent. Examples and properties The standard ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting poin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Magma (algebra)
In abstract algebra, a magma, binar, or, rarely, groupoid is a basic kind of algebraic structure. Specifically, a magma consists of a set equipped with a single binary operation that must be closed by definition. No other properties are imposed. History and terminology The term ''groupoid'' was introduced in 1927 by Heinrich Brandt describing his Brandt groupoid (translated from the German ). The term was then appropriated by B. A. Hausmann and Øystein Ore (1937) in the sense (of a set with a binary operation) used in this article. In a couple of reviews of subsequent papers in Zentralblatt, Brandt strongly disagreed with this overloading of terminology. The Brandt groupoid is a groupoid in the sense used in category theory, but not in the sense used by Hausmann and Ore. Nevertheless, influential books in semigroup theory, including Clifford and Preston (1961) and Howie (1995) use groupoid in the sense of Hausmann and Ore. Hollings (2014) writes that the term ''grou ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Module (mathematics)
In mathematics, a module is a generalization of the notion of vector space in which the field of scalars is replaced by a ring. The concept of ''module'' generalizes also the notion of abelian group, since the abelian groups are exactly the modules over the ring of integers. Like a vector space, a module is an additive abelian group, and scalar multiplication is distributive over the operation of addition between elements of the ring or module and is compatible with the ring multiplication. Modules are very closely related to the representation theory of groups. They are also one of the central notions of commutative algebra and homological algebra, and are used widely in algebraic geometry and algebraic topology. Introduction and definition Motivation In a vector space, the set of scalars is a field and acts on the vectors by scalar multiplication, subject to certain axioms such as the distributive law. In a module, the scalars need only be a ring, so th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Overcategory
In mathematics, specifically category theory, an overcategory (and undercategory) is a distinguished class of categories used in multiple contexts, such as with covering spaces (espace etale). They were introduced as a mechanism for keeping track of data surrounding a fixed object X in some category \mathcal. There is a dual notion of undercategory, which is defined similarly. Definition Let \mathcal be a category and X a fixed object of \mathcalpg 59. The overcategory (also called a slice category) \mathcal/X is an associated category whose objects are pairs (A, \pi) where \pi:A \to X is a morphism in \mathcal. Then, a morphism between objects f:(A, \pi) \to (A', \pi') is given by a morphism f:A \to A' in the category \mathcal such that the following diagram commutes\begin A & \xrightarrow & A' \\ \pi\downarrow \text & \text &\text \downarrow \pi' \\ X & = & X \endThere is a dual notion called the undercategory (also called a coslice category) X/\mathcal whose objects are pair ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


André–Quillen Cohomology
In commutative algebra, André–Quillen cohomology is a theory of cohomology for commutative rings which is closely related to the cotangent complex. The first three cohomology groups were introduced by and are sometimes called Lichtenbaum–Schlessinger functors ''T''0, ''T''1, ''T''2, and the higher groups were defined independently by and using methods of homotopy theory. It comes with a parallel homology theory called André–Quillen homology. Motivation Let ''A'' be a commutative ring, ''B'' be an ''A''-algebra, and ''M'' be a ''B''-module. The André–Quillen cohomology groups are the derived functors of the derivation functor Der''A''(''B'', ''M''). Before the general definitions of André and Quillen, it was known for a long time that given morphisms of commutative rings and a ''C''-module ''M'', there is a three-term exact sequence of derivation modules: :0 \to \operatorname_B(C, M) \to \operatorname_A(C, M) \to \operatorname_A(B, M). This term can be extended to a s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Topological Space
In mathematics, a topological space is, roughly speaking, a geometrical space in which closeness is defined but cannot necessarily be measured by a numeric distance. More specifically, a topological space is a set whose elements are called points, along with an additional structure called a topology, which can be defined as a set of neighbourhoods for each point that satisfy some axioms formalizing the concept of closeness. There are several equivalent definitions of a topology, the most commonly used of which is the definition through open sets, which is easier than the others to manipulate. A topological space is the most general type of a mathematical space that allows for the definition of limits, continuity, and connectedness. Common types of topological spaces include Euclidean spaces, metric spaces and manifolds. Although very general, the concept of topological spaces is fundamental, and used in virtually every branch of modern mathematics. The study of topologi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Homotopy Category
In mathematics, the homotopy category is a category built from the category of topological spaces which in a sense identifies two spaces that have the same shape. The phrase is in fact used for two different (but related) categories, as discussed below. More generally, instead of starting with the category of topological spaces, one may start with any model category and define its associated homotopy category, with a construction introduced by Quillen in 1967. In this way, homotopy theory can be applied to many other categories in geometry and algebra. The naive homotopy category The category of topological spaces Top has objects the topological spaces and morphisms the continuous maps between them. The older definition of the homotopy category hTop, called the naive homotopy category for clarity in this article, has the same objects, and a morphism is a homotopy class of continuous maps. That is, two continuous maps ''f'': ''X'' → ''Y'' are considered the same in the naive h ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Unity (mathematics)
1 (one, unit, unity) is a number representing a single or the only entity. 1 is also a numerical digit and represents a single unit of counting or measurement. For example, a line segment of ''unit length'' is a line segment of length 1. In conventions of sign where zero is considered neither positive nor negative, 1 is the first and smallest positive integer. It is also sometimes considered the first of the infinite sequence of natural numbers, followed by  2, although by other definitions 1 is the second natural number, following  0. The fundamental mathematical property of 1 is to be a multiplicative identity, meaning that any number multiplied by 1 equals the same number. Most if not all properties of 1 can be deduced from this. In advanced mathematics, a multiplicative identity is often denoted 1, even if it is not a number. 1 is by convention not considered a prime number; this was not universally accepted until the mid-20th century. Additionally, 1 is the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Commutative Algebra
Commutative algebra, first known as ideal theory, is the branch of algebra that studies commutative rings, their ideals, and modules over such rings. Both algebraic geometry and algebraic number theory build on commutative algebra. Prominent examples of commutative rings include polynomial rings; rings of algebraic integers, including the ordinary integers \mathbb; and ''p''-adic integers. Commutative algebra is the main technical tool in the local study of schemes. The study of rings that are not necessarily commutative is known as noncommutative algebra; it includes ring theory, representation theory, and the theory of Banach algebras. Overview Commutative algebra is essentially the study of the rings occurring in algebraic number theory and algebraic geometry. In algebraic number theory, the rings of algebraic integers are Dedekind rings, which constitute therefore an important class of commutative rings. Considerations related to modular arithmetic have ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Algebraic Geometry
Algebraic geometry is a branch of mathematics, classically studying zeros of multivariate polynomials. Modern algebraic geometry is based on the use of abstract algebraic techniques, mainly from commutative algebra, for solving geometrical problems about these sets of zeros. The fundamental objects of study in algebraic geometry are algebraic varieties, which are geometric manifestations of solutions of systems of polynomial equations. Examples of the most studied classes of algebraic varieties are: plane algebraic curves, which include lines, circles, parabolas, ellipses, hyperbolas, cubic curves like elliptic curves, and quartic curves like lemniscates and Cassini ovals. A point of the plane belongs to an algebraic curve if its coordinates satisfy a given polynomial equation. Basic questions involve the study of the points of special interest like the singular points, the inflection points and the points at infinity. More advanced questions involve the topo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Homotopical Algebra
In mathematics, homotopical algebra is a collection of concepts comprising the ''nonabelian'' aspects of homological algebra as well as possibly the abelian aspects as special cases. The ''homotopical'' nomenclature stems from the fact that a common approach to such generalizations is via abstract homotopy theory, as in nonabelian algebraic topology, and in particular the theory of closed model categories. This subject has received much attention in recent years due to new foundational work of Vladimir Voevodsky, Eric Friedlander, Andrei Suslin, and others resulting in the A1 homotopy theory for quasiprojective varieties over a field. Voevodsky has used this new algebraic homotopy theory to prove the Milnor conjecture (for which he was awarded the Fields Medal The Fields Medal is a prize awarded to two, three, or four mathematicians under 40 years of age at the International Congress of the International Mathematical Union (IMU), a meeting that takes place every f ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]