HOME





Gross–Neveu Model
The Gross–Neveu model (GN) is a quantum field theory model of Dirac fermions interacting via four-fermion interactions in 1 spatial and 1 time dimension. It was introduced in 1974 by David Gross and André Neveu as a toy model for quantum chromodynamics (QCD), the theory of strong interactions. It shares several features of the QCD: GN theory is asymptotically free thus at strong coupling the strength of the interaction gets weaker and the corresponding \beta function of the interaction coupling is negative, the theory has a dynamical mass generation mechanism with \mathbb_2 chiral symmetry breaking, and in the large number of flavor (N \to \infty) limit, GN theory behaves as 't Hooft's large N_c limit in QCD. It is made using a finite, but possibly large number, \ N\ , of Dirac fermion wave functions \psi_1, \psi_2, \ldots, \psi_N, indexed below by Latin letter \ a ~. The model's Lagrangian density is :\mathcal=\bar \psi_a \left( i\ \partial\!\!\!/\ -\ m \right) \p ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Quantum Field Theory
In theoretical physics, quantum field theory (QFT) is a theoretical framework that combines Field theory (physics), field theory and the principle of relativity with ideas behind quantum mechanics. QFT is used in particle physics to construct physical models of subatomic particles and in condensed matter physics to construct models of quasiparticles. The current standard model of particle physics is based on QFT. History Quantum field theory emerged from the work of generations of theoretical physicists spanning much of the 20th century. Its development began in the 1920s with the description of interactions between light and electrons, culminating in the first quantum field theory—quantum electrodynamics. A major theoretical obstacle soon followed with the appearance and persistence of various infinities in perturbative calculations, a problem only resolved in the 1950s with the invention of the renormalization procedure. A second major barrier came with QFT's apparent inabili ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Unitary Group
Unitary may refer to: Mathematics * Unitary divisor * Unitary element * Unitary group * Unitary matrix * Unitary morphism * Unitary operator * Unitary transformation * Unitary representation * Unitarity (physics) * ''E''-unitary inverse semigroup Politics * Unitary authority * Unitary state See also * Unital (other) * Unitarianism Unitarianism () is a Nontrinitarianism, nontrinitarian sect of Christianity. Unitarian Christians affirm the wikt:unitary, unitary God in Christianity, nature of God as the singular and unique Creator deity, creator of the universe, believe that ...
* * {{disambiguation ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Renormalization Group
In theoretical physics, the renormalization group (RG) is a formal apparatus that allows systematic investigation of the changes of a physical system as viewed at different scales. In particle physics, it reflects the changes in the underlying physical laws (codified in a quantum field theory) as the energy (or mass) scale at which physical processes occur varies. A change in scale is called a scale transformation. The renormalization group is intimately related to ''scale invariance'' and ''conformal invariance'', symmetries in which a system appears the same at all scales ( self-similarity), where under the fixed point of the renormalization group flow the field theory is conformally invariant. As the scale varies, it is as if one is decreasing (as RG is a semi-group and doesn't have a well-defined inverse operation) the magnifying power of a notional microscope viewing the system. In so-called renormalizable theories, the system at one scale will generally consist of self- ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Spontaneous Symmetry Breaking
Spontaneous symmetry breaking is a spontaneous process of symmetry breaking, by which a physical system in a symmetric state spontaneously ends up in an asymmetric state. In particular, it can describe systems where the equations of motion or the Lagrangian obey symmetries, but the lowest-energy vacuum solutions do not exhibit that same symmetry. When the system goes to one of those vacuum solutions, the symmetry is broken for perturbations around that vacuum even though the entire Lagrangian retains that symmetry. Overview The spontaneous symmetry breaking cannot happen in quantum mechanics that describes finite dimensional systems, due to Stone-von Neumann theorem (that states the uniqueness of Heisenberg commutation relations in finite dimensions). So spontaneous symmetry breaking can be observed only in infinite dimensional theories, as quantum field theories. By definition, spontaneous symmetry breaking requires the existence of physical laws which are invariant ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Vacuum Expectation Value
In quantum field theory, the vacuum expectation value (VEV) of an operator is its average or expectation value in the vacuum. The vacuum expectation value of an operator O is usually denoted by \langle O\rangle. One of the most widely used examples of an observable physical effect that results from the vacuum expectation value of an operator is the Casimir effect. This concept is important for working with correlation functions in quantum field theory. In the context of spontaneous symmetry breaking, an operator that has a vanishing expectation value due to symmetry can acquire a nonzero vacuum expectation value during a phase transition. Examples are: *The Higgs field has a vacuum expectation value of 246 GeV. This nonzero value underlies the Higgs mechanism of the Standard Model. This value is given by v = 1/\sqrt = 2M_W/g \approx 246.22\, \rm, where ''MW'' is the mass of the W Boson, G_F^0 the reduced Fermi constant, and the weak isospin coupling, in natural units. I ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




1/N Expansion
In quantum field theory and statistical mechanics, the 1/''N'' expansion (also known as the "large ''N''" expansion) is a particular perturbative analysis of quantum field theories with an internal symmetry group such as SO(N) or SU(N). It consists in deriving an expansion for the properties of the theory in powers of 1/N, which is treated as a small parameter. This technique is used in QCD (even though N is only 3 there) with the gauge group SU(3). Another application in particle physics is to the study of AdS/CFT dualities. It is also extensively used in condensed matter physics where it can be used to provide a rigorous basis for mean-field theory. Example Starting with a simple example — the O(N) φ4 — the scalar field φ takes on values in the real vector representation of O(N). Using the index notation for the N " flavors" with the Einstein summation convention and because O(N) is orthogonal, no distinction will be made between covariant and contravariant ind ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Renormalization
Renormalization is a collection of techniques in quantum field theory, statistical field theory, and the theory of self-similar geometric structures, that is used to treat infinities arising in calculated quantities by altering values of these quantities to compensate for effects of their self-interactions. But even if no infinities arose in loop diagrams in quantum field theory, it could be shown that it would be necessary to renormalize the mass and fields appearing in the original Lagrangian. For example, an electron theory may begin by postulating an electron with an initial mass and charge. In quantum field theory a cloud of virtual particles, such as photons, positrons, and others surrounds and interacts with the initial electron. Accounting for the interactions of the surrounding particles (e.g. collisions at different energies) shows that the electron-system behaves as if it had a different mass and charge than initially postulated. Renormalization, in this example, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

BCS Theory
In physics, the Bardeen–Cooper–Schrieffer (BCS) theory (named after John Bardeen, Leon Cooper, and John Robert Schrieffer) is the first microscopic theory of superconductivity since Heike Kamerlingh Onnes's 1911 discovery. The theory describes superconductivity as a microscopic effect caused by a condensation of Cooper pairs. The theory is also used in nuclear physics to describe the pairing interaction between nucleons in an atomic nucleus. It was proposed by Bardeen, Cooper, and Schrieffer in 1957; they received the Nobel Prize in Physics for this theory in 1972. History Rapid progress in the understanding of superconductivity gained momentum in the mid-1950s. It began with the 1948 paper, "On the Problem of the Molecular Theory of Superconductivity", where Fritz London proposed that the phenomenological London equations may be consequences of the coherence of a quantum state. In 1953, Brian Pippard, motivated by penetration experiments, proposed that this would mo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Quark Confinement
In quantum chromodynamics (QCD), color confinement, often simply called confinement, is the phenomenon that color-charged particles (such as quarks and gluons) cannot be isolated, and therefore cannot be directly observed in normal conditions below the Hagedorn temperature of approximately 2 terakelvin (corresponding to energies of approximately 130–140 M eV per particle). Quarks and gluons must clump together to form hadrons. The two main types of hadron are the mesons (one quark, one antiquark) and the baryons (three quarks). In addition, colorless glueballs formed only of gluons are also consistent with confinement, though difficult to identify experimentally. Quarks and gluons cannot be separated from their parent hadron without producing new hadrons. Origin There is not yet an analytic proof of color confinement in any non-abelian gauge theory. The phenomenon can be understood qualitatively by noting that the force-carrying gluons of QCD have color charge, unlike t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Chiral Symmetry Breaking
In particle physics, chiral symmetry breaking generally refers to the dynamical spontaneous breaking of a chiral symmetry associated with massless fermions. This is usually associated with a gauge theory such as quantum chromodynamics, the quantum field theory of the strong interaction, and it also occurs through the Brout-Englert-Higgs mechanism in the electroweak interactions of the standard model. This phenomenon is analogous to magnetization and superconductivity in condensed matter physics - where, for example, chiral symmetry breaking is the mechanism by which disordered 3D magnetic systems have a finite transition temperature. The basic idea was introduced to particle physics by Yoichiro Nambu, in particular, in the Nambu–Jona-Lasinio model, which is a solvable theory of composite bosons that exhibits dynamical spontaneous chiral symmetry when a 4-fermion coupling constant becomes sufficiently large. Nambu was awarded the 2008 Nobel prize in physics "for the discovery o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Nambu–Jona-Lasinio Model
In quantum field theory, the Nambu–Jona-Lasinio model (or more precisely: ''the Nambu and Jona-Lasinio model'') is a complicated effective theory of nucleons and mesons constructed from interacting Dirac fermions with chiral symmetry, paralleling the construction of Cooper pairs from electrons in the BCS theory of superconductivity. The "complicatedness" of the theory has become more natural as it is now seen as a low-energy approximation of the still more basic theory of quantum chromodynamics, which does not work perturbatively at low energies. Overview The model is much inspired by the different field of solid state theory, particularly from the BCS breakthrough of 1957. The model was introduced in a joint article of Yoichiro Nambu (who also contributed essentially to the theory of superconductivity, i.e., by the "Nambu formalism") and Giovanni Jona-Lasinio, published in 1961. A subsequent paper included chiral symmetry breaking, isospin and strangeness (particle physics) ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Thirring Model
The Thirring model is an exactly solvable quantum field theory which describes the self-interactions of a Dirac field in (1+1) dimensions. Definition The Thirring model is given by the Lagrangian density : \mathcal= \overline(i\partial\!\!\!/-m)\psi -\frac\left(\overline\gamma^\mu\psi\right) \left(\overline\gamma_\mu \psi\right)\ where \psi=(\psi_+,\psi_-) is the field, ''g'' is the coupling constant, ''m'' is the mass, and \gamma^\mu, for \mu = 0,1, are the two-dimensional gamma matrices. This is the unique model of (1+1)-dimensional, Dirac fermions with a local (self-)interaction. Indeed, since there are only 4 independent fields, because of the Pauli principle, all the quartic, local interactions are equivalent; and all higher power, local interactions vanish. (Interactions containing derivatives, such as (\bar \psi\partial\!\!\!/\psi)^2, are not considered because they are non-renormalizable.) The correlation functions of the Thirring model (massive or massless) ver ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]