Gauss Norm
In algebra, the ring of restricted power series is the subring of a formal power series ring that consists of power series whose coefficients approach zero as degree goes to infinity.. Over a non-archimedean complete field, the ring is also called a Tate algebra. Quotient rings of the ring are used in the study of a formal algebraic space as well as rigid analysis, the latter over non-archimedean complete fields. Over a discrete topological ring, the ring of restricted power series coincides with a polynomial ring; thus, in this sense, the notion of "restricted power series" is a generalization of a polynomial. Definition Let ''A'' be a linearly topologized ring, separated and complete and \ the fundamental system of open ideals. Then the ring of restricted power series is defined as the projective limit of the polynomial rings over A/I_: :A \langle x_1, \dots, x_n \rangle = \varprojlim_ A/I_ _1, \dots, x_n/math>. In other words, it is the completion of the polynomial ring ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Algebra
Algebra is a branch of mathematics that deals with abstract systems, known as algebraic structures, and the manipulation of expressions within those systems. It is a generalization of arithmetic that introduces variables and algebraic operations other than the standard arithmetic operations, such as addition and multiplication. Elementary algebra is the main form of algebra taught in schools. It examines mathematical statements using variables for unspecified values and seeks to determine for which values the statements are true. To do so, it uses different methods of transforming equations to isolate variables. Linear algebra is a closely related field that investigates linear equations and combinations of them called '' systems of linear equations''. It provides methods to find the values that solve all equations in the system at the same time, and to study the set of these solutions. Abstract algebra studies algebraic structures, which consist of a set of mathemati ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Continuous Function (topology)
In mathematics, a continuous function is a function (mathematics), function such that a small variation of the argument of a function, argument induces a small variation of the Value (mathematics), value of the function. This implies there are no abrupt changes in value, known as ''Classification of discontinuities, discontinuities''. More precisely, a function is continuous if arbitrarily small changes in its value can be assured by restricting to sufficiently small changes of its argument. A discontinuous function is a function that is . Until the 19th century, mathematicians largely relied on Intuition, intuitive notions of continuity and considered only continuous functions. The (ε, δ)-definition of limit, epsilon–delta definition of a limit was introduced to formalize the definition of continuity. Continuity is one of the core concepts of calculus and mathematical analysis, where arguments and values of functions are real number, real and complex number, complex numbers. ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Norm (mathematics)
In mathematics, a norm is a function (mathematics), function from a real or complex vector space to the non-negative real numbers that behaves in certain ways like the distance from the Origin (mathematics), origin: it Equivariant map, commutes with scaling, obeys a form of the triangle inequality, and zero is only at the origin. In particular, the Euclidean distance in a Euclidean space is defined by a norm on the associated Euclidean vector space, called the #Euclidean norm, Euclidean norm, the #p-norm, 2-norm, or, sometimes, the magnitude or length of the vector. This norm can be defined as the square root of the inner product of a vector with itself. A seminorm satisfies the first two properties of a norm but may be zero for vectors other than the origin. A vector space with a specified norm is called a normed vector space. In a similar manner, a vector space with a seminorm is called a ''seminormed vector space''. The term pseudonorm has been used for several related meaning ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Metric Space
In mathematics, a metric space is a Set (mathematics), set together with a notion of ''distance'' between its Element (mathematics), elements, usually called point (geometry), points. The distance is measured by a function (mathematics), function called a metric or distance function. Metric spaces are a general setting for studying many of the concepts of mathematical analysis and geometry. The most familiar example of a metric space is 3-dimensional Euclidean space with its usual notion of distance. Other well-known examples are a sphere equipped with the angular distance and the hyperbolic plane. A metric may correspond to a Conceptual metaphor , metaphorical, rather than physical, notion of distance: for example, the set of 100-character Unicode strings can be equipped with the Hamming distance, which measures the number of characters that need to be changed to get from one string to another. Since they are very general, metric spaces are a tool used in many different bra ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Complete Metric Space
In mathematical analysis, a metric space is called complete (or a Cauchy space) if every Cauchy sequence of points in has a limit that is also in . Intuitively, a space is complete if there are no "points missing" from it (inside or at the boundary). For instance, the set of rational numbers is not complete, because e.g. \sqrt is "missing" from it, even though one can construct a Cauchy sequence of rational numbers that converges to it (see further examples below). It is always possible to "fill all the holes", leading to the ''completion'' of a given space, as explained below. Definition Cauchy sequence A sequence x_1, x_2, x_3, \ldots of elements from X of a metric space (X, d) is called Cauchy if for every positive real number r > 0 there is a positive integer N such that for all positive integers m, n > N, d(x_m, x_n) < r. Complete space A metric space is complete if any of the following equivalent conditions are satisfied: #Every Cauchy seq ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Normed Algebra
In mathematics, a normed algebra ''A'' is an algebra over a field which has a sub-multiplicative norm: : \forall x,y\in A\qquad \, xy\, \le\, x\, \, y\, . Some authors require it to have a multiplicative identity 1 such that ║1║ = 1. See also * Banach algebra * Composition algebra * Division algebra * Gelfand–Mazur theorem In operator theory, the Gelfand–Mazur theorem is a theorem named after Israel Gelfand and Stanisław Mazur which states that a Banach algebra with unit over the complex numbers in which every nonzero element is invertible is isometrically isomorp ... * Hurwitz's theorem (composition algebras) External reading * Algebras {{algebra-stub ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Banach Algebra
In mathematics, especially functional analysis, a Banach algebra, named after Stefan Banach, is an associative algebra A over the real or complex numbers (or over a non-Archimedean complete normed field) that at the same time is also a Banach space, that is, a normed space that is complete in the metric induced by the norm. The norm is required to satisfy \, x \, y\, \ \leq \, x\, \, \, y\, \quad \text x, y \in A. This ensures that the multiplication operation is continuous with respect to the metric topology. A Banach algebra is called ''unital'' if it has an identity element for the multiplication whose norm is 1, and ''commutative'' if its multiplication is commutative. Any Banach algebra A (whether it is unital or not) can be embedded isometrically into a unital Banach algebra A_e so as to form a closed ideal of A_e. Often one assumes ''a priori'' that the algebra under consideration is unital because one can develop much of the theory by considering A_e and then a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Rigid Geometry
In mathematics, a rigid analytic space is an analogue of a complex analytic space over a nonarchimedean field. Such spaces were introduced by John Tate in 1962, as an outgrowth of his work on uniformizing ''p''-adic elliptic curves with bad reduction using the multiplicative group. In contrast to the classical theory of ''p''-adic analytic manifolds, rigid analytic spaces admit meaningful notions of analytic continuation and connectedness. Definitions The basic rigid analytic object is the ''n''-dimensional unit polydisc, whose ring of functions is the Tate algebra T_n, made of power series in ''n'' variables whose coefficients approach zero in some complete nonarchimedean field ''k''. The Tate algebra is the completion of the polynomial ring in ''n'' variables under the Gauss norm (taking the supremum of coefficients), and the polydisc plays a role analogous to that of affine ''n''-space in algebraic geometry. Points on the polydisc are defined to be maximal ideals in the ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Glossary Of Commutative Algebra
This is a glossary of commutative algebra. See also list of algebraic geometry topics, glossary of classical algebraic geometry, glossary of algebraic geometry, glossary of ring theory and glossary of module theory. In this article, all rings are assumed to be commutative ring, commutative with identity 1. !$@ A B C D E F G H . ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Algebraic Closure
In mathematics, particularly abstract algebra, an algebraic closure of a field ''K'' is an algebraic extension of ''K'' that is algebraically closed. It is one of many closures in mathematics. Using Zorn's lemmaMcCarthy (1991) p.21Kaplansky (1972) pp.74-76 or the weaker ultrafilter lemma, it can be shown that every field has an algebraic closure, and that the algebraic closure of a field ''K'' is unique up to an isomorphism that fixes every member of ''K''. Because of this essential uniqueness, we often speak of ''the'' algebraic closure of ''K'', rather than ''an'' algebraic closure of ''K''. The algebraic closure of a field ''K'' can be thought of as the largest algebraic extension of ''K''. To see this, note that if ''L'' is any algebraic extension of ''K'', then the algebraic closure of ''L'' is also an algebraic closure of ''K'', and so ''L'' is contained within the algebraic closure of ''K''. The algebraic closure of ''K'' is also the smallest algebraically closed ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
\xi 1, \dots, \xi N
Xi ( or ; uppercase Ξ, lowercase ξ; ) is the fourteenth letter of the Greek alphabet, representing the voiceless consonant cluster . Its name is pronounced in Modern Greek. In the system of Greek numerals, it has a value of 60. Xi was derived from the Phoenician letter samekh . Xi is distinct from the letter chi, which gave its form to the Latin letter X. Greek Both in classical Ancient Greek and in Modern Greek, the letter Ξ represents the consonant cluster /ks/. In some archaic local variants of the Greek alphabet, this letter was missing. Instead, especially in the dialects of most of the Greek mainland and Euboea, the cluster /ks/ was represented by Χ (which in classical Greek is chi, used for ). Because this variant of the Greek alphabet was used in Magna Graecia (the Greek colonies in Sicily and the southern part of the Italian peninsula), the Latin alphabet borrowed Χ rather than Ξ as the Latin letter that represented the /ks/ cluster that was also prese ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |