HOME
*





Gap Theorem (other)
In mathematics, gap theorem may refer to: * The Weierstrass gap theorem in algebraic geometry * The Ostrowski–Hadamard gap theorem on lacunary function * The Fabry gap theorem on lacunary functions * The ''gap theorem'' of Fourier analysis, a statement about the vanishing of discrete Fourier coefficients for functions that are identically zero on an interval shorter than 2π * The gap theorem in computational complexity theory * Saharon Shelah's Main Gap Theorem which solved Morley's problem in model theory In mathematical logic, model theory is the study of the relationship between formal theories (a collection of sentences in a formal language expressing statements about a mathematical structure), and their models (those structures in which the ...
{{mathematical disambiguation ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting poin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Weierstrass Gap Theorem
In mathematics, a Weierstrass point P on a nonsingular algebraic curve C defined over the complex numbers is a point such that there are more functions on C, with their poles restricted to P only, than would be predicted by the Riemann–Roch theorem. The concept is named after Karl Weierstrass. Consider the vector spaces :L(0), L(P), L(2P), L(3P), \dots where L(kP) is the space of meromorphic functions on C whose order at P is at least -k and with no other poles. We know three things: the dimension is at least 1, because of the constant functions on C; it is non-decreasing; and from the Riemann–Roch theorem the dimension eventually increments by exactly 1 as we move to the right. In fact if g is the genus of C, the dimension from the k-th term is known to be :l(kP) = k - g + 1, for k \geq 2g - 1. Our knowledge of the sequence is therefore :1, ?, ?, \dots, ?, g, g + 1, g + 2, \dots. What we know about the ? entries is that they can increment by at most 1 each time ( ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Ostrowski–Hadamard Gap Theorem
In mathematics, the Ostrowski–Hadamard gap theorem is a result about the analytic continuation of complex power series whose non-zero terms are of orders that have a suitable "gap" between them. Such a power series is "badly behaved" in the sense that it cannot be extended to be an analytic function anywhere on the boundary of its disc of convergence. The result is named after the mathematicians Alexander Ostrowski and Jacques Hadamard. Statement of the theorem Let 0 < ''p''1 < ''p''2 < ... be a sequence of integers such that, for some ''λ'' > 1 and all ''j'' ∈ N, :\frac > \lambda. Let (''α''''j'')''j''∈N be a sequence of complex numbers such that the power series :f(z) = \sum_ \alpha_ z^ has radius of convergence 1. Then no point ''z'' with , ''z'',  = 1 is a regular point for ''f'', i.e. ''f'' cannot be analytically extended from the open unit disc ''D'' to any larger open set inclu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Fabry Gap Theorem
In mathematics, the Fabry gap theorem is a result about the analytic continuation of complex power series whose non-zero terms are of orders that have a certain "gap" between them. Such a power series is "badly behaved" in the sense that it cannot be extended to be an analytic function anywhere on the boundary of its disc of convergence. The theorem may be deduced from the first main theorem of Turán's method. Statement of the theorem Let 0 < ''p''1 < ''p''2 < ... be a sequence of integers such that the sequence ''p''''n''/''n'' diverges to ∞. Let (''α''''j'')''j''∈N be a sequence of complex numbers such that the power series :f(z) = \sum_ \alpha_ z^ has radius of convergence 1. Then the unit circle is a natural boundary for the series ''f''. Converse A converse to the theorem was established by George Pólya. If lim inf ''p''''n''/''n'' is finite then there exists a power series with exponent sequence ''p''''n'', radius ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Fourier Analysis
In mathematics, Fourier analysis () is the study of the way general functions may be represented or approximated by sums of simpler trigonometric functions. Fourier analysis grew from the study of Fourier series, and is named after Joseph Fourier, who showed that representing a function as a sum of trigonometric functions greatly simplifies the study of heat transfer. The subject of Fourier analysis encompasses a vast spectrum of mathematics. In the sciences and engineering, the process of decomposing a function into oscillatory components is often called Fourier analysis, while the operation of rebuilding the function from these pieces is known as Fourier synthesis. For example, determining what component frequencies are present in a musical note would involve computing the Fourier transform of a sampled musical note. One could then re-synthesize the same sound by including the frequency components as revealed in the Fourier analysis. In mathematics, the term ''Fourier a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Gap Theorem
:''See also Gap theorem (other) for other gap theorems in mathematics.'' In computational complexity theory, the Gap Theorem, also known as the Borodin–Trakhtenbrot Gap Theorem, is a major theorem about the complexity of computable functions. It essentially states that there are arbitrarily large computable gaps in the hierarchy of complexity classes. For any computable function that represents an increase in computational resources, one can find a resource bound such that the set of functions computable within the expanded resource bound is the same as the set computable within the original bound. The theorem was proved independently by Boris Trakhtenbrot and Allan Borodin. Although Trakhtenbrot's derivation preceded Borodin's by several years, it was not known nor recognized in the West until after Borodin's work was published. Gap theorem The general form of the theorem is as follows. :Suppose is an abstract (Blum) complexity measure. For any total computable ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Computational Complexity Theory
In theoretical computer science and mathematics, computational complexity theory focuses on classifying computational problems according to their resource usage, and relating these classes to each other. A computational problem is a task solved by a computer. A computation problem is solvable by mechanical application of mathematical steps, such as an algorithm. A problem is regarded as inherently difficult if its solution requires significant resources, whatever the algorithm used. The theory formalizes this intuition, by introducing mathematical models of computation to study these problems and quantifying their computational complexity, i.e., the amount of resources needed to solve them, such as time and storage. Other measures of complexity are also used, such as the amount of communication (used in communication complexity), the number of gates in a circuit (used in circuit complexity) and the number of processors (used in parallel computing). One of the roles of compu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Saharon Shelah
Saharon Shelah ( he, שהרן שלח; born July 3, 1945) is an Israeli mathematician. He is a professor of mathematics at the Hebrew University of Jerusalem and Rutgers University in New Jersey. Biography Shelah was born in Jerusalem on July 3, 1945. He is the son of the Israeli poet and political activist Yonatan Ratosh. He received his PhD for his work on stable theories in 1969 from the Hebrew University. Shelah is married to Yael, and has three children. His brother, magistrate judge Hamman Shelah was murdered along with his wife and daughter by an Egyptian soldier in the Ras Burqa massacre in 1985. Shelah planned to be a scientist while at primary school, but initially was attracted to physics and biology, not mathematics. Later he found mathematical beauty in studying geometry: He said, "But when I reached the ninth grade I began studying geometry and my eyes opened to that beauty—a system of demonstration and theorems based on a very small number of axioms which i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Spectrum Of A Theory
In model theory, a branch of mathematical logic, the spectrum of a theory is given by the number of isomorphism classes of models in various cardinalities. More precisely, for any complete theory ''T'' in a language we write ''I''(''T'', ''κ'') for the number of models of ''T'' (up to isomorphism) of cardinality ''κ''. The spectrum problem is to describe the possible behaviors of ''I''(''T'', ''κ'') as a function of ''κ''. It has been almost completely solved for the case of a countable theory ''T''. Early results In this section ''T'' is a countable complete theory and ''κ'' is a cardinal. The Löwenheim–Skolem theorem shows that if ''I''(''T'',''κ'') is nonzero for one infinite cardinal then it is nonzero for all of them. Morley's categoricity theorem was the first main step in solving the spectrum problem: it states that if ''I''(''T'',''κ'') is 1 for some uncountable ''κ'' then it is 1 for all uncountable ''κ''. Robert Vaught showed that ''I''(''T'',ℵ0) c ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]