Functional Differential Equation
A functional differential equation is a differential equation with deviating argument. That is, a functional differential equation is an equation that contains a function and some of its derivatives evaluated at different argument values. Functional differential equations find use in mathematical models that assume a specified behavior or phenomenon depends on the present as well as the past state of a system. In other words, past events explicitly influence future results. For this reason, functional differential equations are more applicable than ordinary differential equations (ODE), in which future behavior only implicitly depends on the past. Definition Unlike ordinary differential equations, which contain a function of one variable and its derivatives evaluated with the same input, functional differential equations contain a function and its derivatives evaluated with different input values. *An example of an ordinary differential equation would be f'(x) = 2f(x) +1 *In comp ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Ordinary Differential Equation
In mathematics, an ordinary differential equation (ODE) is a differential equation (DE) dependent on only a single independent variable (mathematics), variable. As with any other DE, its unknown(s) consists of one (or more) Function (mathematics), function(s) and involves the derivatives of those functions. The term "ordinary" is used in contrast with partial differential equation, ''partial'' differential equations (PDEs) which may be with respect to one independent variable, and, less commonly, in contrast with stochastic differential equations, ''stochastic'' differential equations (SDEs) where the progression is random. Differential equations A linear differential equation is a differential equation that is defined by a linear polynomial in the unknown function and its derivatives, that is an equation of the form :a_0(x)y +a_1(x)y' + a_2(x)y'' +\cdots +a_n(x)y^+b(x)=0, where a_0(x),\ldots,a_n(x) and b(x) are arbitrary differentiable functions that do not need to be linea ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Delay Differential Equation
In mathematics, delay differential equations (DDEs) are a type of differential equation in which the derivative of the unknown function at a certain time is given in terms of the values of the function at previous times. DDEs are also called time-delay systems, systems with aftereffect or dead-time, hereditary systems, equations with deviating argument, or differential-difference equations. They belong to the class of systems with a functional state, i.e. partial differential equations (PDEs) which are infinite dimensional, as opposed to ordinary differential equations (ODEs) having a finite dimensional state vector. Four points may give a possible explanation of the popularity of DDEs: # Aftereffect is an applied problem: it is well known that, together with the increasing expectations of dynamic performances, engineers need their models to behave more like the real process. Many processes include aftereffect phenomena in their inner dynamics. In addition, actuators, sensors, ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Logistic Function
A logistic function or logistic curve is a common S-shaped curve ( sigmoid curve) with the equation f(x) = \frac where The logistic function has domain the real numbers, the limit as x \to -\infty is 0, and the limit as x \to +\infty is L. The exponential function with negated argument (e^ ) is used to define the standard logistic function, depicted at right, where L=1, k=1, x_0=0, which has the equation f(x) = \frac and is sometimes simply called the sigmoid. It is also sometimes called the expit, being the inverse function of the logit. The logistic function finds applications in a range of fields, including biology (especially ecology), biomathematics, chemistry, demography, economics, geoscience, mathematical psychology, probability, sociology, political science, linguistics, statistics, and artificial neural networks. There are various generalizations, depending on the field. History The logistic function was introduced in a series of three papers by Pier ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
![]() |
Population Growth
Population growth is the increase in the number of people in a population or dispersed group. The World population, global population has grown from 1 billion in 1800 to 8.2 billion in 2025. Actual global human population growth amounts to around 70 million annually, or 0.85% per year. As of 2024, The United Nations projects that global population will peak in the mid-2080s at around 10.3 billion. The UN's estimates have decreased strongly in recent years due to sharp declines in global birth rates. Others have challenged many recent population projections as having underestimated population growth. The world human population has been growing since the end of the Black Death, around the year 1350. A mix of technological advancement that improved agricultural productivity and sanitation and medical advancement that reduced mortality increased population growth. In some geographies, this has slowed through the process called the demographic transition, where many nations with high ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
Carrying Capacity
The carrying capacity of an ecosystem is the maximum population size of a biological species that can be sustained by that specific environment, given the food, habitat, water, and other resources available. The carrying capacity is defined as the environment's maximal load, which in population ecology corresponds to the population equilibrium, when the number of deaths in a population equals the number of births (as well as immigration and emigration). Carrying capacity of the environment implies that the resources extraction is not above the rate of regeneration of the resources and the wastes generated are within the assimilating capacity of the environment. The effect of carrying capacity on population dynamics is modelled with a logistic function. Carrying capacity is applied to the maximum population an environment can support in ecology, agriculture and fisheries. The term carrying capacity had been applied to a few different processes in the past before finally being appl ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Flip-flop (electronics)
In electronics, flip-flops and latches are electronic circuit, circuits that have two stable states that can store state information – a bistable multivibrator. The circuit can be made to change state by signals applied to one or more control inputs and will output its state (often along with its logical complement too). It is the basic storage element in sequential logic. Flip-flops and latches are fundamental building blocks of digital electronics systems used in computers, communications, and many other types of systems. Flip-flops and latches are used as data storage elements to store a single ''bit'' (binary digit) of data; one of its two states represents a "one" and the other represents a "zero". Such data storage can be used for storage of ''state (computer science), state'', and such a circuit is described as sequential logic in electronics. When used in a finite-state machine, the output and next state depend not only on its current input, but also on its current stat ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Volterra Integral Equation
In mathematics, the Volterra integral equations are a special type of integral equations. They are divided into two groups referred to as the first and the second kind. A linear Volterra equation of the first kind is : f(t) = \int_a^t K(t,s)\,x(s)\,ds where ''f'' is a given function and ''x'' is an unknown function to be solved for. A linear Volterra equation of the second kind is : x(t) = f(t) + \int_a^t K(t,s)x(s)\,ds. In operator theory, and in Fredholm theory, the corresponding operators are called Volterra operators. A useful method to solve such equations, the Adomian decomposition method, is due to George Adomian. A linear Volterra integral equation is a convolution equation if : x(t) = f(t) + \int_^t K(t-s)x(s)\,ds. The function K in the integral is called the kernel. Such equations can be analyzed and solved by means of Laplace transform techniques. For a weakly singular kernel of the form K(t,s) = (t^2-s^2)^ with 0Defining x_ = x(s_), f_ = f(t_), and K_ = ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
![]() |
Bifurcation Theory
Bifurcation theory is the Mathematics, mathematical study of changes in the qualitative or topological structure of a given family of curves, such as the integral curves of a family of vector fields, and the solutions of a family of differential equations. Most commonly applied to the mathematics, mathematical study of dynamical systems, a bifurcation occurs when a small smooth change made to the parameter values (the bifurcation parameters) of a system causes a sudden 'qualitative' or topological change in its behavior. Bifurcations occur in both continuous systems (described by Ordinary differential equation, ordinary, Delay differential equation, delay or Partial differential equation, partial differential equations) and discrete systems (described by maps). The name "bifurcation" was first introduced by Henri Poincaré in 1885 in the first paper in mathematics showing such a behavior. Bifurcation types It is useful to divide bifurcations into two principal classes: * Local bif ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
Lyapunov Function
In the theory of ordinary differential equations (ODEs), Lyapunov functions, named after Aleksandr Lyapunov, are scalar functions that may be used to prove the stability of an equilibrium of an ODE. Lyapunov functions (also called Lyapunov’s second method for stability) are important to stability theory of dynamical systems and control theory. A similar concept appears in the theory of general state-space Markov chains usually under the name Foster–Lyapunov functions. For certain classes of ODEs, the existence of Lyapunov functions is a necessary and sufficient condition for stability. Whereas there is no general technique for constructing Lyapunov functions for ODEs, in many specific cases the construction of Lyapunov functions is known. For instance, quadratic functions suffice for systems with one state, the solution of a particular linear matrix inequality provides Lyapunov functions for linear systems, and conservation laws can often be used to construct Lyapunov fun ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Volterra Series
The Volterra series is a model for non-linear behavior similar to the Taylor series. It differs from the Taylor series in its ability to capture "memory" effects. The Taylor series can be used for approximating the response of a nonlinear system to a given input if the output of the system depends strictly on the input at that particular time. In the Volterra series, the output of the nonlinear system depends on the input to the system at ''all'' other times. This provides the ability to capture the "memory" effect of devices like capacitors and inductors. It has been applied in the fields of medicine (biomedical engineering) and biology, especially neuroscience. It is also used in electrical engineering to model intermodulation distortion in many devices, including power amplifiers and frequency mixers. Its main advantage lies in its generalizability: it can represent a wide range of systems. Thus, it is sometimes considered a non-parametric model. In mathematics, a Volterra se ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |