Fully Polynomial Approximation Scheme
A fully polynomial-time approximation scheme (FPTAS) is an algorithm for finding approximate solutions to function problems, especially optimization problems. An FPTAS takes as input an instance of the problem and a parameter ε > 0. It returns as output a value is at least 1-\epsilon times the correct value, and at most 1 + \epsilon times the correct value. In the context of optimization problems, the correct value is understood to be the value of the optimal solution, and it is often implied that an FPTAS should produce a valid solution (and not just the value of the solution). Returning a value and finding a solution with that value are equivalent assuming that the problem possesses self reducibility. Importantly, the run-time of an FPTAS is polynomial in the problem size and in 1/ε. This is in contrast to a general polynomial-time approximation scheme (PTAS). The run-time of a general PTAS is polynomial in the problem size for each specific ε, but might be exponenti ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Algorithm
In mathematics and computer science, an algorithm () is a finite sequence of rigorous instructions, typically used to solve a class of specific problems or to perform a computation. Algorithms are used as specifications for performing calculations and data processing. More advanced algorithms can perform automated deductions (referred to as automated reasoning) and use mathematical and logical tests to divert the code execution through various routes (referred to as automated decision-making). Using human characteristics as descriptors of machines in metaphorical ways was already practiced by Alan Turing with terms such as "memory", "search" and "stimulus". In contrast, a heuristic is an approach to problem solving that may not be fully specified or may not guarantee correct or optimal results, especially in problem domains where there is no well-defined correct or optimal result. As an effective method, an algorithm can be expressed within a finite amount of spac ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Multiway Number Partitioning
In computer science, multiway number partitioning is the problem of partitioning a multiset of numbers into a fixed number of subsets, such that the sums of the subsets are as similar as possible. It was first presented by Ronald Graham in 1969 in the context of the Identical-machines scheduling problem. The problem is parametrized by a positive integer ''k'', and called ''k''-way number partitioning. The input to the problem is a multiset ''S'' of numbers (usually integers), whose sum is ''k*T''. The associated decision problem is to decide whether ''S'' can be partitioned into ''k'' subsets such that the sum of each subset is exactly ''T''. There is also an optimization problem: find a partition of ''S'' into ''k'' subsets, such that the ''k'' sums are "as near as possible". The exact optimization objective can be defined in several ways: * Minimize the difference between the largest sum and the smallest sum. This objective is common in papers about multiway number partitioning, a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Edge Cover
In graph theory, an edge cover of a graph is a set of edges such that every vertex of the graph is incident to at least one edge of the set. In computer science, the minimum edge cover problem is the problem of finding an edge cover of minimum size. It is an optimization problem that belongs to the class of covering problems and can be solved in polynomial time. Definition Formally, an edge cover of a graph ''G'' is a set of edges ''C'' such that each vertex in ''G'' is incident with at least one edge in ''C''. The set ''C'' is said to ''cover'' the vertices of ''G''. The following figure shows examples of edge coverings in two graphs (the set ''C'' is marked with red). : A minimum edge covering is an edge covering of smallest possible size. The edge covering number \rho(G) is the size of a minimum edge covering. The following figure shows examples of minimum edge coverings (again, the set ''C'' is marked with red). : Note that the figure on the right is not only an ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Shortest Path Problem
In graph theory, the shortest path problem is the problem of finding a path between two vertices (or nodes) in a graph such that the sum of the weights of its constituent edges is minimized. The problem of finding the shortest path between two intersections on a road map may be modeled as a special case of the shortest path problem in graphs, where the vertices correspond to intersections and the edges correspond to road segments, each weighted by the length of the segment. Definition The shortest path problem can be defined for graphs whether undirected, directed, or mixed. It is defined here for undirected graphs; for directed graphs the definition of path requires that consecutive vertices be connected by an appropriate directed edge. Two vertices are adjacent when they are both incident to a common edge. A path in an undirected graph is a sequence of vertices P = ( v_1, v_2, \ldots, v_n ) \in V \times V \times \cdots \times V such that v_i is adjacent to v_ for 1 \le ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Subset Sum Problem
The subset sum problem (SSP) is a decision problem in computer science. In its most general formulation, there is a multiset S of integers and a target-sum T, and the question is to decide whether any subset of the integers sum to precisely T''.'' The problem is known to be NP. Moreover, some restricted variants of it are NP-complete too, for example: * The variant in which all inputs are positive. * The variant in which inputs may be positive or negative, and T=0. For example, given the set \, the answer is ''yes'' because the subset \ sums to zero. * The variant in which all inputs are positive, and the target sum is exactly half the sum of all inputs, i.e., T = \frac(a_1+\dots+a_n) . This special case of SSP is known as the partition problem. SSP can also be regarded as an optimization problem: find a subset whose sum is at most ''T'', and subject to that, as close as possible to ''T''. It is NP-hard, but there are several algorithms that can solve it reasonably quickly in p ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Multiple Subset Sum The multiple subset sum problem is an optimization problem in computer science and operations research. It is a generalization of the subset sum problem. The input to the problem is a multiset S of ''n'' integers and a positive integer ''m'' representi |