Forster–Swan Theorem
   HOME





Forster–Swan Theorem
The Forster–Swan theorem is a result from commutative algebra that states an upper bound for the minimal number of generators of a finitely generated module M over a commutative Noetherian ring. The usefulness of the theorem stems from the fact, that in order to form the bound, one only needs the minimum number of generators of all localizations M_. The theorem was proven in a more restrictive form in 1964 by Otto Forster and then in 1967 generalized by Richard G. Swan to its modern form. Forster–Swan theorem Let *R be a commutative Noetherian ring with one, *M be a finitely generated R-module, *\mathfrak a prime ideal of R. *\mu(M),\mu_(M) are the minimal die number of generators to generated the R-module M respectively the R_-module M_. According to Nakayama's lemma In mathematics, more specifically abstract algebra and commutative algebra, Nakayama's lemma — also known as the Krull–Azumaya theorem — governs the interaction between the Jacobson radical of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Commutative Algebra
Commutative algebra, first known as ideal theory, is the branch of algebra that studies commutative rings, their ideal (ring theory), ideals, and module (mathematics), modules over such rings. Both algebraic geometry and algebraic number theory build on commutative algebra. Prominent examples of commutative rings include polynomial rings; rings of algebraic integers, including the ordinary integers \mathbb; and p-adic number, ''p''-adic integers. Commutative algebra is the main technical tool of algebraic geometry, and many results and concepts of commutative algebra are strongly related with geometrical concepts. The study of rings that are not necessarily commutative is known as noncommutative algebra; it includes ring theory, representation theory, and the theory of Banach algebras. Overview Commutative algebra is essentially the study of the rings occurring in algebraic number theory and algebraic geometry. Several concepts of commutative algebras have been developed in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Generator (mathematics)
In mathematics and physics, the term generator or generating set may refer to any of a number of related concepts. The underlying concept in each case is that of a smaller set of objects, together with a set of operations that can be applied to it, that result in the creation of a larger collection of objects, called the generated set. The larger set is then said to be generated by the smaller set. It is commonly the case that the generating set has a simpler set of properties than the generated set, thus making it easier to discuss and examine. It is usually the case that properties of the generating set are in some way preserved by the act of generation; likewise, the properties of the generated set are often reflected in the generating set. List of generators A list of examples of generating sets follow. * Generating set or spanning set of a vector space: a set that spans the vector space * Generating set of a group: a subset of a group that is not contained in any sub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Finitely Generated Module
In mathematics, a finitely generated module is a module that has a finite generating set. A finitely generated module over a ring ''R'' may also be called a finite ''R''-module, finite over ''R'', or a module of finite type. Related concepts include finitely cogenerated modules, finitely presented modules, finitely related modules and coherent modules all of which are defined below. Over a Noetherian ring the concepts of finitely generated, finitely presented and coherent modules coincide. A finitely generated module over a field is simply a finite-dimensional vector space, and a finitely generated module over the integers is simply a finitely generated abelian group. Definition The left ''R''-module ''M'' is finitely generated if there exist ''a''1, ''a''2, ..., ''a''''n'' in ''M'' such that for any ''x'' in ''M'', there exist ''r''1, ''r''2, ..., ''r''''n'' in ''R'' with ''x'' = ''r''1''a''1 + ''r''2''a''2 + ... + ''r''''n''''a''''n''. The set is referred to as a gene ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Noetherian Ring
In mathematics, a Noetherian ring is a ring that satisfies the ascending chain condition on left and right ideals. If the chain condition is satisfied only for left ideals or for right ideals, then the ring is said left-Noetherian or right-Noetherian respectively. Formally, every increasing sequence I_1\subseteq I_2 \subseteq I_3 \subseteq \cdots of left (or right) ideals has a largest element; that is, there exists an n such that I_=I_=\cdots. Equivalently, a ring is left-Noetherian (respectively right-Noetherian) if every left ideal (respectively right-ideal) is finitely generated. A ring is Noetherian if it is both left- and right-Noetherian. Noetherian rings are fundamental in both commutative and noncommutative ring theory since many rings that are encountered in mathematics are Noetherian (in particular the ring of integers, polynomial rings, and rings of algebraic integers in number fields), and many general theorems on rings rely heavily on the Noetherian property ( ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Localization (commutative Algebra)
In commutative algebra and algebraic geometry, localization is a formal way to introduce the "denominators" to a given ring or module. That is, it introduces a new ring/module out of an existing ring/module ''R'', so that it consists of fractions \frac, such that the denominator ''s'' belongs to a given subset ''S'' of ''R''. If ''S'' is the set of the non-zero elements of an integral domain, then the localization is the field of fractions: this case generalizes the construction of the field \Q of rational numbers from the ring \Z of integers. The technique has become fundamental, particularly in algebraic geometry, as it provides a natural link to sheaf theory. In fact, the term ''localization'' originated in algebraic geometry: if ''R'' is a ring of functions defined on some geometric object (algebraic variety) ''V'', and one wants to study this variety "locally" near a point ''p'', then one considers the set ''S'' of all functions that are not zero at ''p'' and localizes ''R' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Otto Forster
Otto Forster (born 8 July 1937 in Munich) is a German mathematician. Education and career Forster received his ''Diplom'' in 1960 from Ludwig Maximilian University of Munich. There he received in 1961 his doctorate. His thesis ''Banachalgebren stetiger Funktionen auf kompakten Räumen'' (Banach algebras of continuous functions on compact spaces) was supervised by Karl Stein. In 1965 Forster also completed his habilitation in Munich. After spending the academic year 1966–1967 at the Institute for Advanced Study and the academic year 1967–1968 as a substitute professor at the University of Göttingen, he became a full professor at the University of Regensburg in 1968. In 1968–1969 he was a visiting professor at the University of Geneva. In 1975 he moved to the University of Münster. Since 1982 he has been a professor at the Mathematical Institute of the Ludwig Maximilian University of Munich. Even after his retirement in summer 2005, he still regularly offers lectures for adv ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Richard Swan
Richard Gordon Swan (; born 1933) is an American mathematician who is known for the Serre–Swan theorem relating the geometric notion of vector bundles to the algebraic concept of projective modules, and for the Swan representation, an ''l''-adic projective representation of a Galois group. His work has mainly been in the area of algebraic K-theory. Education and career As an undergraduate at Princeton University, Swan was one of five winners in the William Lowell Putnam Mathematical Competition in 1952. He earned his Ph.D. in 1957 from Princeton University under the supervision of John Coleman Moore. In 1969 he proved in full generality what is now known as the Stallings–Swan theorem. He is the Louis Block Professor Emeritus of Mathematics at the University of Chicago.. His doctoral students at Chicago include Charles Weibel, also known for his work in K-theory. Together with Otto Forster he proved the Forster–Swan theorem. Awards and honors In 1970 Swan was awarded t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Prime Ideal
In algebra, a prime ideal is a subset of a ring (mathematics), ring that shares many important properties of a prime number in the ring of Integer#Algebraic properties, integers. The prime ideals for the integers are the sets that contain all the multiple (mathematics), multiples of a given prime number, together with the zero ideal. Primitive ideals are prime, and prime ideals are both primary ideal, primary and semiprime ideal, semiprime. Prime ideals for commutative rings Definition An ideal (ring theory), ideal of a commutative ring is prime if it has the following two properties: * If and are two elements of such that their product is an element of , then is in or is in , * is not the whole ring . This generalizes the following property of prime numbers, known as Euclid's lemma: if is a prime number and if divides a product of two integers, then divides or divides . We can therefore say :A positive integer is a prime number if and only if n\Z is a prime ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Nakayama's Lemma
In mathematics, more specifically abstract algebra and commutative algebra, Nakayama's lemma — also known as the Krull–Azumaya theorem — governs the interaction between the Jacobson radical of a ring (typically a commutative ring) and its finitely generated modules. Informally, the lemma immediately gives a precise sense in which finitely generated modules over a commutative ring behave like vector spaces over a field. It is an important tool in algebraic geometry, because it allows local data on algebraic varieties, in the form of modules over local rings, to be studied pointwise as vector spaces over the residue field of the ring. The lemma is named after the Japanese mathematician Tadashi Nakayama and introduced in its present form in , although it was first discovered in the special case of ideals in a commutative ring by Wolfgang Krull and then in general by Goro Azumaya (1951). In the commutative case, the lemma is a simple consequence of a generalized fo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Commutative Algebra
Commutative algebra, first known as ideal theory, is the branch of algebra that studies commutative rings, their ideals, and modules over such rings. Both algebraic geometry and algebraic number theory build on commutative algebra. Prominent examples of commutative rings include polynomial rings; rings of algebraic integers, including the ordinary integers \mathbb; and ''p''-adic integers. Commutative algebra is the main technical tool of algebraic geometry, and many results and concepts of commutative algebra are strongly related with geometrical concepts. The study of rings that are not necessarily commutative is known as noncommutative algebra; it includes ring theory, representation theory, and the theory of Banach algebras. Overview Commutative algebra is essentially the study of the rings occurring in algebraic number theory and algebraic geometry. Several concepts of commutative algebras have been developed in relation with algebraic number theory, such as Dedek ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  



MORE