Fischer Group Fi22
In the area of modern algebra known as group theory In abstract algebra, group theory studies the algebraic structures known as group (mathematics), groups. The concept of a group is central to abstract algebra: other well-known algebraic structures, such as ring (mathematics), rings, field ( ..., the Fischer group ''Fi22'' is a sporadic simple group of order : 64,561,751,654,400 : = 217395271113 : ≈ 6. History ''Fi22'' is one of the 26 sporadic groups and is the smallest of the three Fischer groups. It was introduced by while investigating 3-transposition groups. The outer automorphism group has order 2, and the Schur multiplier has order 6. Representations The Fischer group Fi22 has a rank 3 action on a graph of 3510 vertices corresponding to its 3-transpositions, with point stabilizer the double cover of the group PSU6(2). It also has two rank 3 actions on 14080 points, exchanged by an outer automorphism. Fi22 has an irreducible ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Group Theory
In abstract algebra, group theory studies the algebraic structures known as group (mathematics), groups. The concept of a group is central to abstract algebra: other well-known algebraic structures, such as ring (mathematics), rings, field (mathematics), fields, and vector spaces, can all be seen as groups endowed with additional operation (mathematics), operations and axioms. Groups recur throughout mathematics, and the methods of group theory have influenced many parts of algebra. Linear algebraic groups and Lie groups are two branches of group theory that have experienced advances and have become subject areas in their own right. Various physical systems, such as crystals and the hydrogen atom, and Standard Model, three of the four known fundamental forces in the universe, may be modelled by symmetry groups. Thus group theory and the closely related representation theory have many important applications in physics, chemistry, and materials science. Group theory is also cen ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mathieu Group M22
In the area of modern algebra known as group theory, the Mathieu group ''M22'' is a sporadic simple group of order : 443,520 = 27325711 : ≈ 4. History and properties ''M22'' is one of the 26 sporadic groups and was introduced by . It is a 3-fold transitive permutation group on 22 objects. The Schur multiplier of M22 is cyclic of order 12, and the outer automorphism group has order 2. There are several incorrect statements about the 2-part of the Schur multiplier in the mathematical literature. incorrectly claimed that the Schur multiplier of M22 has order 3, and in a correction incorrectly claimed that it has order 6. This caused an error in the title of the paper announcing the discovery of the Janko group J4. showed that the Schur multiplier is in fact cyclic of order 12. calculated the 2-part of all the cohomology of M22. Representations M22 has a 3-transitive permutation representation on 22 points, with point stabilizer the group PSL3(4), some ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mathematical Proceedings Of The Cambridge Philosophical Society
''Mathematical Proceedings of the Cambridge Philosophical Society'' is a mathematical journal published by Cambridge University Press for the Cambridge Philosophical Society. It aims to publish original research papers from a wide range of pure and applied mathematics. The journal, titled ''Proceedings of the Cambridge Philosophical Society'' before 1975, has been published since 1843. Abstracting and indexing The journal is abstracted and indexed in *MathSciNet *Science Citation Index Expanded *Scopus *ZbMATH Open See also *Cambridge Philosophical Society The Cambridge Philosophical Society (CPS) is a scientific society at the University of Cambridge. It was founded in 1819. The name derives from the medieval use of the word philosophy to denote any research undertaken outside the fields of law ... External linksofficial website References Academic journals associated with learned and professional societies Cambridge University Press academic journals Mathematics e ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Journal Of Algebra
''Journal of Algebra'' (ISSN 0021-8693) is an international mathematical research journal in algebra. An imprint of Academic Press, it is published by Elsevier Elsevier ( ) is a Dutch academic publishing company specializing in scientific, technical, and medical content. Its products include journals such as ''The Lancet'', ''Cell (journal), Cell'', the ScienceDirect collection of electronic journals, .... ''Journal of Algebra'' was founded by Graham Higman, who was its editor from 1964 to 1984. From 1985 until 2000, Walter Feit served as its editor-in-chief. In 2004, ''Journal of Algebra'' announced (vol. 276, no. 1 and 2) the creation of a new section on computational algebra, with a separate editorial board. The first issue completely devoted to computational algebra was vol. 292, no. 1 (October 2005). The Editor-in-Chief of the ''Journal of Algebra'' is Michel Broué, Université Paris Diderot, and Gerhard Hiß, Rheinisch-Westfälische Technische Hochschule Aachen ( R ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Inventiones Mathematicae
''Inventiones Mathematicae'' is a mathematical journal published monthly by Springer Science+Business Media. It was established in 1966 and is regarded as one of the most prestigious mathematics journals in the world. The current (2023) managing editors are Jean-Benoît Bost (University of Paris-Sud) and Wilhelm Schlag (Yale University Yale University is a Private university, private Ivy League research university in New Haven, Connecticut, United States. Founded in 1701, Yale is the List of Colonial Colleges, third-oldest institution of higher education in the United Stat ...). Abstracting and indexing The journal is abstracted and indexed in: References External links *{{Official website, https://www.springer.com/journal/222 Mathematics journals Academic journals established in 1966 English-language journals Springer Science+Business Media academic journals Monthly journals ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Cambridge University Press
Cambridge University Press was the university press of the University of Cambridge. Granted a letters patent by King Henry VIII in 1534, it was the oldest university press in the world. Cambridge University Press merged with Cambridge Assessment to form Cambridge University Press and Assessment under Queen Elizabeth II's approval in August 2021. With a global sales presence, publishing hubs, and offices in more than 40 countries, it published over 50,000 titles by authors from over 100 countries. Its publications include more than 420 academic journals, monographs, reference works, school and university textbooks, and English language teaching and learning publications. It also published Bibles, runs a bookshop in Cambridge, sells through Amazon, and has a conference venues business in Cambridge at the Pitt Building and the Sir Geoffrey Cass Sports and Social Centre. It also served as the King's Printer. Cambridge University Press, as part of the University of Cambridge, was a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mathieu Group M12
In the area of modern algebra known as group theory, the Mathieu group ''M12'' is a sporadic simple group of order : 95,040 = 12111098 = 2633511. History and properties ''M12'' is one of the 26 sporadic groups and was introduced by . It is a sharply 5-transitive permutation group on 12 objects. showed that the Schur multiplier of M12 has order 2 (correcting a mistake in where they incorrectly claimed it has order 1). The double cover had been implicitly found earlier by , who showed that M12 is a subgroup of the projective linear group of dimension 6 over the finite field with 3 elements. The outer automorphism group has order 2, and the full automorphism group M12.2 is contained in M24 as the stabilizer of a pair of complementary dodecads of 24 points, with outer automorphisms of M12 swapping the two dodecads. Representations calculated the complex character table of M12. M12 has a strictly 5-transitive permutation representation on 12 points, who ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Tits Group
In group theory, the Tits group 2''F''4(2)′, named for Jacques Tits (), is a finite simple group of order : 17,971,200 = 211 · 33 · 52 · 13. This is the only simple group that is a derivative of a group of Lie type that is not a group of Lie type in any series from exceptional isomorphisms. It is sometimes considered a 27th sporadic group. History and properties The Ree groups 2''F''4(22''n''+1) were constructed by , who showed that they are simple if ''n'' ≥ 1. The first member 2''F''4(2) of this series is not simple. It was studied by who showed that it is almost simple, its derived subgroup 2''F''4(2)′ of index 2 being a new simple group, now called the Tits group. The group 2''F''4(2) is a group of Lie type and has a BN pair, but the Tits group itself does not have a BN pair. The Tits group is member of the infinite family 2''F''4(22''n''+1)′ of commutator groups of the Ree groups, and thus by def ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Dedekind Eta Function
In mathematics, the Dedekind eta function, named after Richard Dedekind, is a modular form of weight 1/2 and is a function defined on the upper half-plane of complex numbers, where the imaginary part is positive. It also occurs in bosonic string theory. Definition For any complex number with , let ; then the eta function is defined by, :\eta(\tau) = e^\frac \prod_^\infty \left(1-e^\right) = q^\frac \prod_^\infty \left(1 - q^n\right) . Raising the eta equation to the 24th power and multiplying by gives :\Delta(\tau)=(2\pi)^\eta^(\tau) where is the modular discriminant. The presence of 24 can be understood by connection with other occurrences, such as in the 24-dimensional Leech lattice. The eta function is holomorphic on the upper half-plane but cannot be continued analytically beyond it. The eta function satisfies the functional equations :\begin \eta(\tau+1) &=e^\frac\eta(\tau),\\ \eta\left(-\frac\right) &= \sqrt\, \eta(\tau).\, \end In the second equation the b ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Sporadic Simple Group
In the mathematical classification of finite simple groups, there are a number of groups which do not fit into any infinite family. These are called the sporadic simple groups, or the sporadic finite groups, or just the sporadic groups. A simple group is a group ''G'' that does not have any normal subgroups except for the trivial group and ''G'' itself. The mentioned classification theorem states that the list of finite simple groups consists of 18 countably infinite families plus 26 exceptions that do not follow such a systematic pattern. These 26 exceptions are the sporadic groups. The Tits group is sometimes regarded as a sporadic group because it is not strictly a group of Lie type, in which case there would be 27 sporadic groups. The monster group, or ''friendly giant'', is the largest of the sporadic groups, and all but six of the other sporadic groups are subquotients of it. Names Five of the sporadic groups were discovered by Émile Mathieu in the 1860s and the ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Monstrous Moonshine
In mathematics, monstrous moonshine, or moonshine theory, is the unexpected connection between the monster group ''M'' and modular functions, in particular the ''j'' function. The initial numerical observation was made by John McKay in 1978, and the phrase was coined by John Conway and Simon P. Norton in 1979. The monstrous moonshine is now known to be underlain by a vertex operator algebra called the moonshine module (or monster vertex algebra) constructed by Igor Frenkel, James Lepowsky, and Arne Meurman in 1988, which has the monster group as its group of symmetries. This vertex operator algebra is commonly interpreted as a structure underlying a two-dimensional conformal field theory, allowing physics to form a bridge between two mathematical areas. The conjectures made by Conway and Norton were proven by Richard Borcherds for the moonshine module in 1992 using the no-ghost theorem from string theory and the theory of vertex operator algebras and generalize ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |