HOME
*





Fink Protocol
The Fink protocol (also known as Successive Pairs or Lone Chooser) is a protocol for proportional division of a cake. Its main advantage is that it can work in an online fashion, without knowing the number of partners in advance. When a new partner joins the party, the existing division is adjusted to give a fair share to the newcomer, with minimal effect on existing partners. Its main disadvantage is that, instead of giving each partner a single connected piece, it gives each partner a large number of "crumbs". Protocol We describe the protocol inductively for an increasing number of partners. When partner #1 enters the party, he just takes the entire cake. His value is thus 1. When partner #2 comes, partner #1 cuts the cake to two pieces that are equal in his eyes. The new partner chooses the piece that is better in his eyes. The value of each partner is thus at least 1/2 (just like in the divide and choose protocol). When partner #3 joins, both partners #1 and #2 cut their ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Proportional Division
A proportional division is a kind of fair division in which a resource is divided among ''n'' partners with subjective valuations, giving each partner at least 1/''n'' of the resource by his/her own subjective valuation. Proportionality was the first fairness criterion studied in the literature; hence it is sometimes called "simple fair division". It was first conceived by Steinhaus. Example Consider a land asset that has to be divided among 3 heirs: Alice and Bob who think that it's worth 3 million dollars, and George who thinks that it's worth $4.5M. In a proportional division, Alice receives a land-plot that she believes to be worth at least $1M, Bob receives a land-plot that ''he'' believes to be worth at least $1M (even though Alice may think it is worth less), and George receives a land-plot that he believes to be worth at least $1.5M. Existence A proportional division does not always exist. For example, if the resource contains several indivisible items and the number ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Fair Cake-cutting
Fair cake-cutting is a kind of fair division problem. The problem involves a ''heterogeneous'' resource, such as a cake with different toppings, that is assumed to be ''divisible'' – it is possible to cut arbitrarily small pieces of it without destroying their value. The resource has to be divided among several partners who have different preferences over different parts of the cake, i.e., some people prefer the chocolate toppings, some prefer the cherries, some just want as large a piece as possible. The division should be ''unanimously'' fair - each person should receive a piece that he or she believes to be a fair share. The "cake" is only a metaphor; procedures for fair cake-cutting can be used to divide various kinds of resources, such as land estates, advertisement space or broadcast time. The prototypical procedure for fair cake-cutting is divide and choose, which is mentioned already in the book of Genesis. It solves the fair division problem for two people. The moder ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Divide And Choose
Divide and choose (also Cut and choose or I cut, you choose) is a procedure for fair division of a continuous resource, such as a cake, between two parties. It involves a heterogeneous good or resource ("the cake") and two partners who have different preferences over parts of the cake. The protocol proceeds as follows: one person ("the cutter") cuts the cake into two pieces; the other person ("the chooser") selects one of the pieces; the cutter receives the remaining piece. The procedure has been used since ancient times to divide land, cake and other resources between two parties. Currently, there is an entire field of research, called fair cake-cutting, devoted to various extensions and generalizations of cut-and-choose. History Divide and choose is mentioned in the Bible, in the Book of Genesis (chapter 13). When Abraham and Lot come to the land of Canaan, Abraham suggests that they divide it among them. Then Abraham, coming from the south, divides the land to a "left" (western) ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Super-proportional Division
A strongly-proportional division (sometimes called super-proportional division) is a kind of a fair division. It is a division of resources among ''n'' partners, in which the value received by each partner is strictly more than his/her due share of 1/''n'' of the total value. Formally, in a strongly-proportional division of a resource ''C'' among ''n'' partners, each partner ''i'', with value measure ''Vi'', receives a share ''Xi'' such thatV_i(X_i) > V_i(C)/n.Obviously, a strongly-proportional division does not exist when all partners have the same value measure. The best condition that can ''always'' be guaranteed is V_i(X_i) \geq V_i(C)/n, which is the condition for a plain proportional division. However, one may hope that, when different agents have different valuations, it may be possible to use this fact for the benefit of all players, and give each of them strictly more than their due share. Existence In 1948, Hugo Steinhaus conjectured the existence of a super-proportional ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Austin Moving-knife Procedure
The Austin moving-knife procedures are procedures for equitable division of a cake. They allocate each of ''n'' partners, a piece of the cake which this partner values as ''exactly'' 1/n of the cake. This is in contrast to proportional division procedures, which give each partner ''at least'' 1/n of the cake, but may give more to some of the partners. When n=2, the division generated by Austin's procedure is an exact division and it is also envy-free. Moreover, it is possible to divide the cake to any number ''k'' of pieces which both partners value as exactly 1/''k''. Hence, it is possible to divide the cake between the partners in any fraction (e.g. give 1/3 to Alice and 2/3 to George). When n>2, the division is neither exact nor envy-free, since each partner only values his own piece as 1/n, but may value other pieces differently. The main mathematical tool used by Austin's procedure is the intermediate value theorem (IVT). Two partners and half-cakes The basic procedur ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Fair Division Protocols
A fair (archaic: faire or fayre) is a gathering of people for a variety of entertainment or commercial activities. Fairs are typically temporary with scheduled times lasting from an afternoon to several weeks. Types Variations of fairs include: * Art fairs, including art exhibitions and arts festivals * County fair (USA) or county show (UK), a public agricultural show exhibiting the equipment, animals, sports and recreation associated with agriculture and animal husbandry. * Festival, an event ordinarily coordinated with a theme e.g. music, art, season, tradition, history, ethnicity, religion, or a national holiday. * Health fair, an event designed for outreach to provide basic preventive medicine and medical screening * Historical reenactments, including Renaissance fairs and Dickens fairs * Horse fair, an event where people buy and sell horses. * Job fair, event in which employers, recruiters, and schools give information to potential employees. * Regional or state fair, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]