HOME





Fibonacci Quarterly
The ''Fibonacci Quarterly'' is a scientific journal on mathematical topics related to the Fibonacci numbers, published four times per year. It is the primary publication of The Fibonacci Association, which has published it since 1963. Its founding editors were Verner Emil Hoggatt Jr. and Alfred Brousseau;Biography of Verner Emil Hoggatt Jr.
by Clark Kimberling the present editor is Professor Curtis Cooper of the Mathematics Department of the University of Central Missouri. The ''Fibonacci Quarterly'' has an editorial board of nineteen members and is overseen by the nine-me ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Curtis Cooper (mathematician)
Curtis Niles Cooper is an American mathematician who was a professor at the University of Central Missouri, in the Department of Mathematics and Computer Science. GIMPS Using software from the GIMPS project, Cooper and Steven Boone found the 43rd known Mersenne prime on their 700 Personal computer, PC Computer cluster, cluster on December 15, 2005. The prime, 230,402,457 − 1, is 9,152,052 digits long and is the ninth Mersenne prime for GIMPS. Cooper and Boone became the first GIMPS contributors to find two primes when they also found the 44th known Mersenne prime, 232,582,657 − 1 (or M32,582,657), which has 9,808,358 digits. This prime was discovered on September 4, 2006, using a PC cluster of over 850 machines. This is the tenth Mersenne prime for GIMPS. On January 25, 2013, Cooper found his third Mersenne prime of 257,885,161 − 1. On September 17, 2015, Cooper's computer reported yet another Mersenne prime, 274,207,281 − 1, which was the largest known prime number at ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Pseudoprimes
A pseudoprime is a probable prime (an integer that shares a property common to all prime numbers) that is not actually prime. Pseudoprimes are classified according to which property of primes they satisfy. Some sources use the term pseudoprime to describe all probable primes, both composite numbers and actual primes. Pseudoprimes are of primary importance in public-key cryptography, which makes use of the difficulty of factoring large numbers into their prime factors. Carl Pomerance estimated in 1988 that it would cost $10 million to factor a number with 144 digits, and $100 billion to factor a 200-digit number (the cost today is dramatically lower but still prohibitively high). But finding two large prime numbers as needed for this use is also expensive, so various probabilistic primality tests are used, some of which in rare cases inappropriately deliver composite numbers instead of primes. On the other hand, deterministic primality tests, such as the AKS primality test, do not ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hypergeometric Functions
In mathematics, the Gaussian or ordinary hypergeometric function 2''F''1(''a'',''b'';''c'';''z'') is a special function represented by the hypergeometric series, that includes many other special functions as specific or limiting cases. It is a solution of a second-order linear ordinary differential equation (ODE). Every second-order linear ODE with three regular singular points can be transformed into this equation. For systematic lists of some of the many thousands of published identities involving the hypergeometric function, see the reference works by and . There is no known system for organizing all of the identities; indeed, there is no known algorithm that can generate all identities; a number of different algorithms are known that generate different series of identities. The theory of the algorithmic discovery of identities remains an active research topic. History The term "hypergeometric series" was first used by John Wallis in his 1655 book ''Arithmetica Infinitor ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Fractal Dimension
In mathematics, a fractal dimension is a term invoked in the science of geometry to provide a rational statistical index of complexity detail in a pattern. A fractal pattern changes with the Scaling (geometry), scale at which it is measured. It is also a measure of the Space-filling curve, space-filling capacity of a pattern and tells how a fractal scales differently, in a fractal (non-integer) dimension. The main idea of "fractured" Hausdorff dimension, dimensions has a long history in mathematics, but the term itself was brought to the fore by Benoit Mandelbrot based on How Long Is the Coast of Britain? Statistical Self-Similarity and Fractional Dimension, his 1967 paper on self-similarity in which he discussed ''fractional dimensions''. In that paper, Mandelbrot cited previous work by Lewis Fry Richardson describing the counter-intuitive notion that a coastline's measured length changes with the length of the measuring stick used (see #coastline, Fig. 1). In terms of that ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Elliptic Curves
In mathematics, an elliptic curve is a Smoothness, smooth, Projective variety, projective, algebraic curve of Genus of an algebraic curve, genus one, on which there is a specified point . An elliptic curve is defined over a field (mathematics), field and describes points in , the Cartesian product of with itself. If the field's characteristic (algebra), characteristic is different from 2 and 3, then the curve can be described as a plane algebraic curve which consists of solutions for: :y^2 = x^3 + ax + b for some coefficients and in . The curve is required to be Singular point of a curve, non-singular, which means that the curve has no cusp (singularity), cusps or Self-intersection, self-intersections. (This is equivalent to the condition , that is, being square-free polynomial, square-free in .) It is always understood that the curve is really sitting in the projective plane, with the point being the unique point at infinity. Many sources define an elliptic curve to be ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Collatz Sequence
The Collatz conjecture is one of the most famous unsolved problems in mathematics. The conjecture asks whether repeating two simple arithmetic operations will eventually transform every positive integer into 1. It concerns sequences of integers in which each term is obtained from the previous term as follows: if a term is even, the next term is one half of it. If a term is odd, the next term is 3 times the previous term plus 1. The conjecture is that these sequences always reach 1, no matter which positive integer is chosen to start the sequence. The conjecture has been shown to hold for all positive integers up to , but no general proof has been found. It is named after the mathematician Lothar Collatz, who introduced the idea in 1937, two years after receiving his doctorate. The sequence of numbers involved is sometimes referred to as the hailstone sequence, hailstone numbers or hailstone numerals (because the values are usually subject to multiple descents and ascents like ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Diophantine Equation
''Diophantine'' means pertaining to the ancient Greek mathematician Diophantus. A number of concepts bear this name: *Diophantine approximation In number theory, the study of Diophantine approximation deals with the approximation of real numbers by rational numbers. It is named after Diophantus of Alexandria. The first problem was to know how well a real number can be approximated ... * Diophantine equation * Diophantine quintuple * Diophantine set {{disambig ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Quadratic Residues
In number theory, an integer ''q'' is a quadratic residue modulo ''n'' if it is congruent to a perfect square modulo ''n''; that is, if there exists an integer ''x'' such that :x^2\equiv q \pmod. Otherwise, ''q'' is a quadratic nonresidue modulo ''n''. Quadratic residues are used in applications ranging from acoustical engineering to cryptography and the factoring of large numbers. History, conventions, and elementary facts Fermat, Euler, Lagrange, Legendre, and other number theorists of the 17th and 18th centuries established theorems and formed conjectures about quadratic residues, but the first systematic treatment is § IV of Gauss's ''Disquisitiones Arithmeticae'' (1801). Article 95 introduces the terminology "quadratic residue" and "quadratic nonresidue", and says that if the context makes it clear, the adjective "quadratic" may be dropped. For a given ''n'', a list of the quadratic residues modulo ''n'' may be obtained by simply squaring all the numbers 0, 1, ..., . ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Ramsey Theory
Ramsey theory, named after the British mathematician and philosopher Frank P. Ramsey, is a branch of the mathematical field of combinatorics that focuses on the appearance of order in a substructure given a structure of a known size. Problems in Ramsey theory typically ask a question of the form: "how big must some structure be to guarantee that a particular property holds?" Examples A typical result in Ramsey theory starts with some mathematical structure that is then cut into pieces. How big must the original structure be in order to ensure that at least one of the pieces has a given interesting property? This idea can be defined as partition regularity. For example, consider a complete graph of order ''n''; that is, there are ''n'' vertices and each vertex is connected to every other vertex by an edge. A complete graph of order 3 is called a triangle. Now colour each edge either red or blue. How large must ''n'' be in order to ensure that there is either a blue triangle or a re ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Pythagorean Triple
A Pythagorean triple consists of three positive integers , , and , such that . Such a triple is commonly written , a well-known example is . If is a Pythagorean triple, then so is for any positive integer . A triangle whose side lengths are a Pythagorean triple is a right triangle and called a Pythagorean triangle. A primitive Pythagorean triple is one in which , and are coprime (that is, they have no common divisor larger than 1). For example, is a primitive Pythagorean triple whereas is not. Every Pythagorean triple can be scaled to a unique primitive Pythagorean triple by dividing by their greatest common divisor. Conversely, every Pythagorean triple can be obtained by multiplying the elements of a primitive Pythagorean triple by a positive integer (the same for the three elements). The name is derived from the Pythagorean theorem, stating that every right triangle has side lengths satisfying the formula a^2+b^2=c^2; thus, Pythagorean triples describe the three integer ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Stirling Number
In mathematics, Stirling numbers arise in a variety of Analysis (mathematics), analytic and combinatorics, combinatorial problems. They are named after James Stirling (mathematician), James Stirling, who introduced them in a purely algebraic setting in his book ''Methodus differentialis'' (1730). They were rediscovered and given a combinatorial meaning by Masanobu Saka in his 1782 ''Sanpō-Gakkai'' ''(The Sea of Learning on Mathematics)''. Two different sets of numbers bear this name: the Stirling numbers of the first kind and the Stirling numbers of the second kind. Additionally, Lah numbers are sometimes referred to as Stirling numbers of the third kind. Each kind is detailed in its respective article, this one serving as a description of relations between them. A common property of all three kinds is that they describe coefficients relating three different sequences of polynomials that frequently arise in combinatorics. Moreover, all three can be defined as the number of part ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Continued Fraction
A continued fraction is a mathematical expression that can be written as a fraction with a denominator that is a sum that contains another simple or continued fraction. Depending on whether this iteration terminates with a simple fraction or not, the continued fraction is finite or infinite. Different fields of mathematics have different terminology and notation for continued fraction. In number theory the standard unqualified use of the term continued fraction refers to the special case where all numerators are 1, and is treated in the article simple continued fraction. The present article treats the case where numerators and denominators are sequences \,\ of constants or functions. From the perspective of number theory, these are called generalized continued fraction. From the perspective of complex analysis or numerical analysis, however, they are just standard, and in the present article they will simply be called "continued fraction". Formulation A continued fraction is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]