F. Thomas Farrell
Francis Thomas Farrell (born November 14, 1941, in Ohio, United States) is an American mathematician who has made contributions in the area of topology and differential geometry. Farrell is a distinguished professor emeritus of mathematics at Binghamton University. He also holds a position at the Yau Mathematical Sciences Center, Tsinghua University. Biographical data Farrell got his bachelor's degree in 1963 from the University of Notre Dame and earned his Ph.D in Mathematics from Yale University in 1967. His Ph.D. advisor was Wu-Chung Hsiang, and his doctoral thesis title was "The Obstruction to Fibering a Manifold over a Circle". He was a NSF Post-doctoral Fellow at the University of California at Berkeley from 1968 to 1969, and became an assistant professor there from 1969 to 1972. He then went to Pennsylvania State University, where he was promoted to professor in 1978. Later he joined the University of Michigan (1979–1985) and Columbia University (1984–1992). Since 199 ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Ohio
Ohio () is a U.S. state, state in the Midwestern United States, Midwestern region of the United States. Of the List of states and territories of the United States, fifty U.S. states, it is the List of U.S. states and territories by area, 34th-largest by area, and with a population of nearly 11.8 million, is the List of U.S. states and territories by population, seventh-most populous and List of U.S. states and territories by population density, tenth-most densely populated. The state's capital and List of cities in Ohio, largest city is Columbus, Ohio, Columbus, with the Columbus metropolitan area, Ohio, Columbus metro area, Cincinnati metropolitan area, Greater Cincinnati, and Greater Cleveland being the List of metropolitan statistical areas, largest metropolitan areas. Ohio is bordered by Lake Erie to the north, Pennsylvania to the east, West Virginia to the southeast, Kentucky to the southwest, Indiana to the west, and Michigan to the northwest. Ohio is historically known as ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
International Congress Of Mathematicians
The International Congress of Mathematicians (ICM) is the largest conference for the topic of mathematics. It meets once every four years, hosted by the International Mathematical Union (IMU). The Fields Medals, the Nevanlinna Prize (to be renamed as the IMU Abacus Medal), the Gauss Prize, and the Chern Medal are awarded during the congress's opening ceremony. Each congress is memorialized by a printed set of Proceedings recording academic papers based on invited talks intended to be relevant to current topics of general interest. Being invited to talk at the ICM has been called "the equivalent ... of an induction to a hall of fame". History Felix Klein and Georg Cantor are credited with putting forward the idea of an international congress of mathematicians in the 1890s.A. John Coleman"Mathematics without borders": a book review ''CMS Notes'', vol 31, no. 3, April 1999, pp. 3-5 The University of Chicago, which had opened in 1892, organized an International Mathematical Con ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Farrell–Jones Conjecture
In mathematics, the Farrell–Jones conjecture, named after F. Thomas Farrell and Lowell E. Jones, states that certain assembly maps are isomorphisms. These maps are given as certain homomorphisms. The motivation is the interest in the target of the assembly maps; this may be, for instance, the algebraic K-theory of a group ring :K_n(RG) or the L-theory of a group ring :L_n(RG), where ''G'' is some group. The sources of the assembly maps are equivariant homology theory evaluated on the classifying space of ''G'' with respect to the family of virtually cyclic subgroups of ''G''. So assuming the Farrell–Jones conjecture is true, it is possible to restrict computations to virtually cyclic subgroups to get information on complicated objects such as K_n(RG) or L_n(RG). The Baum–Connes conjecture formulates a similar statement, for the topological K-theory of reduced group C^*-algebras K^ _n(C^r_*(G)). Formulation One can find for any ring R equivariant homology theories K ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Tate Cohomology
In mathematics, Tate cohomology groups are a slightly modified form of the usual cohomology groups of a finite group that combine homology and cohomology groups into one sequence. They were introduced by , and are used in class field theory. Definition If ''G'' is a finite group and ''A'' a ''G''-module, then there is a natural map ''N'' from H_0(G,A) to H^0(G,A) taking a representative ''a'' to \sum_ ga (the sum over all ''G''-conjugates of ''a''). The Tate cohomology groups \hat H^n(G,A) are defined by *\hat H^n(G,A) = H^n(G,A) for n\ge 1, *\hat H^0(G,A)=\operatorname N= quotient of H^0(G,A) by norms of elements of ''A'', *\hat H^(G,A)=\ker N= quotient of norm 0 elements of ''A'' by principal elements of ''A'', *\hat H^(G,A) = H_(G,A) for n\le -2. Properties * If :: 0 \longrightarrow A \longrightarrow B \longrightarrow C \longrightarrow 0 :is a short exact sequence of ''G''-modules, then we get the usual long exact sequence of Tate cohomology groups: ::\cdots \longrighta ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Journal Of Pure And Applied Algebra
The ''Journal of Pure and Applied Algebra'' is a monthly peer-reviewed scientific journal covering that part of algebra likely to be of general mathematical interest: algebraic results with immediate applications, and the development of algebraic theories of sufficiently general relevance to allow for future applications. Its founding editors-in-chief were Peter J. Freyd (University of Pennsylvania) and Alex Heller (City University of New York). The current managing editors are Eric Friedlander (University of Southern California), Charles Weibel (Rutgers University), and Srikanth Iyengar (University of Utah). Abstracting and indexing The journal is abstracted and indexed in Current Contents/Physics, Chemical, & Earth Sciences, Mathematical Reviews, PASCAL, Science Citation Index, Zentralblatt MATH, and Scopus. According to the ''Journal Citation Reports'', the journal has a 2016 impact factor The impact factor (IF) or journal impact factor (JIF) of an academic journal is ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Indiana University Mathematics Journal
The ''Indiana University Mathematics Journal'' is a journal of mathematics published by Indiana University. Its first volume was published in 1952, under the name ''Journal of Rational Mechanics and Analysis'' and edited by Zachery D. Paden and Clifford Truesdell Clifford Ambrose Truesdell III (February 18, 1919 – January 14, 2000) was an American mathematician, natural philosopher, and historian of science. Life Truesdell was born in Los Angeles, California. After high school, he spent two years in Eur .... In 1957, Eberhard Hopf became editor, the journal name changed to the ''Journal of Mathematics and Mechanics'', and Truesdell founded a separate successor journal, the '' Archive for Rational Mechanics and Analysis'', now published by Springer-Verlag. The ''Journal of Mathematics and Mechanics'' later changed its name again to the present name. The full text of all articles published under the various incarnations of this journal is available online from the journal's w ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Fibration
The notion of a fibration generalizes the notion of a fiber bundle and plays an important role in algebraic topology, a branch of mathematics. Fibrations are used, for example, in postnikov-systems or obstruction theory. In this article, all mappings are continuous mappings between topological spaces. Formal definitions Homotopy lifting property A mapping p \colon E \to B satisfies the homotopy lifting property for a space X if: * for every homotopy h \colon X \times , 1\to B and * for every mapping (also called lift) \tilde h_0 \colon X \to E lifting h, _ = h_0 (i.e. h_0 = p \circ \tilde h_0) there exists a (not necessarily unique) homotopy \tilde h \colon X \times , 1\to E lifting h (i.e. h = p \circ \tilde h) with \tilde h_0 = \tilde h, _. The following commutative diagram shows the situation:^ Fibration A fibration (also called Hurewicz fibration) is a mapping p \colon E \to B satisfying the homotopy lifting property for all spaces X. The space B is called bas ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Manifold
In mathematics, a manifold is a topological space that locally resembles Euclidean space near each point. More precisely, an n-dimensional manifold, or ''n-manifold'' for short, is a topological space with the property that each point has a neighborhood that is homeomorphic to an open subset of n-dimensional Euclidean space. One-dimensional manifolds include lines and circles, but not lemniscates. Two-dimensional manifolds are also called surfaces. Examples include the plane, the sphere, and the torus, and also the Klein bottle and real projective plane. The concept of a manifold is central to many parts of geometry and modern mathematical physics because it allows complicated structures to be described in terms of well-understood topological properties of simpler spaces. Manifolds naturally arise as solution sets of systems of equations and as graphs of functions. The concept has applications in computer-graphics given the need to associate pictures with coordinates ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Non-positive Curvature
In mathematics, spaces of non-positive curvature occur in many contexts and form a generalization of hyperbolic geometry. In the category of Riemannian manifolds, one can consider the sectional curvature of the manifold and require that this curvature be everywhere less than or equal to zero. The notion of curvature extends to the category of geodesic metric spaces, where one can use comparison triangles to quantify the curvature of a space; in this context, non-positively curved spaces are known as (locally) CAT(0) spaces. Riemann Surfaces If S is a closed, orientable Riemann surface then it follows from the Uniformization theorem that S may be endowed with a complete Riemannian metric with constant Gaussian curvature of either 0, 1 or -1. As a result of the Gauss–Bonnet theorem one can determine that the surfaces which have a Riemannian metric of constant curvature 0 -1 i.e. Riemann surfaces with a complete, Riemannian metric of non-positive constant curvature, are exac ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Inventiones Mathematicae
''Inventiones Mathematicae'' is a mathematical journal published monthly by Springer Science+Business Media. It was established in 1966 and is regarded as one of the most prestigious mathematics journals in the world. The current managing editors are Camillo De Lellis (Institute for Advanced Study, Princeton) and Jean-Benoît Bost Jean-Benoît Bost (born 27 July 1961, in Neuilly-sur-Seine) is a French mathematician. Early life and education In 1977, Bost graduated from the Lycée Louis-le-Grand and finished first in the Concours général, the national competition for the ... ( University of Paris-Sud). Abstracting and indexing The journal is abstracted and indexed in: References External links *{{Official website, https://www.springer.com/journal/222 Mathematics journals Publications established in 1966 English-language journals Springer Science+Business Media academic journals Monthly journals ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Flat Manifold
In mathematics, a Riemannian manifold is said to be flat if its Riemann curvature tensor is everywhere zero. Intuitively, a flat manifold is one that "locally looks like" Euclidean space in terms of distances and angles, e.g. the interior angles of a triangle add up to 180°. The universal cover of a complete flat manifold is Euclidean space. This can be used to prove the theorem of that all compact flat manifolds are finitely covered by tori; the 3-dimensional case was proved earlier by . Examples The following manifolds can be endowed with a flat metric. Note that this may not be their 'standard' metric (for example, the flat metric on the 2-dimensional torus is not the metric induced by its usual embedding into \mathbb^3). Dimension 1 Every one-dimensional Riemannian manifold is flat. Conversely, given that every connected one-dimensional smooth manifold is diffeomorphic to either \mathbb or S^1, it is straightforward to see that every connected one-dimensional Riemannian man ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Borel Conjecture
In mathematics, specifically geometric topology, the Borel conjecture (named for Armand Borel) asserts that an aspherical closed manifold is determined by its fundamental group, up to homeomorphism. It is a rigidity conjecture, asserting that a weak, algebraic notion of equivalence (namely, homotopy equivalence) should imply a stronger, topological notion (namely, homeomorphism). Precise formulation of the conjecture Let M and N be closed and aspherical topological manifolds, and let :f \colon M \to N be a homotopy equivalence. The Borel conjecture states that the map f is homotopic to a homeomorphism. Since aspherical manifolds with isomorphic fundamental groups are homotopy equivalent, the Borel conjecture implies that aspherical closed manifolds are determined, up to homeomorphism, by their fundamental groups. This conjecture is false if topological manifolds and homeomorphisms are replaced by smooth manifolds and diffeomorphisms; counterexamples can be constructed by ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |