HOME





Exponential Polynomial
In mathematics, exponential polynomials are functions on fields, rings, or abelian groups that take the form of polynomials in a variable and an exponential function. Definition In fields An exponential polynomial generally has both a variable ''x'' and some kind of exponential function ''E''(''x''). In the complex numbers there is already a canonical exponential function, the function that maps ''x'' to '' e''''x''. In this setting the term exponential polynomial is often used to mean polynomials of the form ''P''(''x'', ''e''''x'') where ''P'' ∈ C 'x'', ''y''is a polynomial in two variables. There is nothing particularly special about C here; exponential polynomials may also refer to such a polynomial on any exponential field or exponential ring with its exponential function taking the place of ''e''''x'' above. Similarly, there is no reason to have one variable, and an exponential polynomial in ''n'' variables would be of the form ''P''(''x''1, ..., ''x''''n' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Topological Abelian Group
In mathematics, a topological abelian group, or TAG, is a topological group that is also an abelian group. That is, a TAG is both a Group (algebra), group and a topological space, the group operations are Continuous (topology), continuous, and the group's binary operation is commutative. The theory of topological groups applies also to TAGs, but more can be done with TAGs. Locally compact space, Locally compact TAGs, in particular, are used heavily in harmonic analysis. See also * * * * * * * * * , a topological abelian group that is compact and connected * * * * * * * References

* *''Fourier analysis on Groups'', by Walter Rudin. Abelian group theory Topology Topological groups {{group-theory-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Delay Differential Equation
In mathematics, delay differential equations (DDEs) are a type of differential equation in which the derivative of the unknown function at a certain time is given in terms of the values of the function at previous times. DDEs are also called time-delay systems, systems with aftereffect or dead-time, hereditary systems, equations with deviating argument, or differential-difference equations. They belong to the class of systems with a functional state, i.e. partial differential equations (PDEs) which are infinite dimensional, as opposed to ordinary differential equations (ODEs) having a finite dimensional state vector. Four points may give a possible explanation of the popularity of DDEs: # Aftereffect is an applied problem: it is well known that, together with the increasing expectations of dynamic performances, engineers need their models to behave more like the real process. Many processes include aftereffect phenomena in their inner dynamics. In addition, actuators, sensors, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


O-minimal Structure
In mathematical logic, and more specifically in model theory, an infinite structure (''M'',<,...) that is totally ordered by < is called an o-minimal structure if and only if every definable subset ''X'' ⊆ ''M'' (with parameters taken from ''M'') is a finite union of intervals and points. O-minimality can be regarded as a weak form of . A structure ''M'' is o-minimal if and only if every

picture info

Set Theory
Set theory is the branch of mathematical logic that studies Set (mathematics), sets, which can be informally described as collections of objects. Although objects of any kind can be collected into a set, set theory – as a branch of mathematics – is mostly concerned with those that are relevant to mathematics as a whole. The modern study of set theory was initiated by the German mathematicians Richard Dedekind and Georg Cantor in the 1870s. In particular, Georg Cantor is commonly considered the founder of set theory. The non-formalized systems investigated during this early stage go under the name of ''naive set theory''. After the discovery of Paradoxes of set theory, paradoxes within naive set theory (such as Russell's paradox, Cantor's paradox and the Burali-Forti paradox), various axiomatic systems were proposed in the early twentieth century, of which Zermelo–Fraenkel set theory (with or without the axiom of choice) is still the best-known and most studied. Set the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Wilkie's Theorem
In mathematics, Wilkie's theorem is a result by Alex Wilkie about the theory of ordered fields with an exponential function, or equivalently about the geometric nature of exponential varieties. Formulations In terms of model theory, Wilkie's theorem deals with the language ''L''exp = (+, −, ·, ''m''. Gabrielov's theorem states that any formula in this language is equivalent to an existential one, as above. Hence the theory of the real ordered field with restricted analytic functions is model complete. Intermediate results Gabrielov's theorem applies to the real field with all restricted analytic functions adjoined, whereas Wilkie's theorem removes the need to restrict the function, but only allows one to add the exponential function. As an intermediate result Wilkie asked when the complement of a sub-analytic set could be defined using the same analytic functions that described the original set. It turns out the required functions are the Pfaffian functions. In part ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Differential Geometry
Differential geometry is a Mathematics, mathematical discipline that studies the geometry of smooth shapes and smooth spaces, otherwise known as smooth manifolds. It uses the techniques of Calculus, single variable calculus, vector calculus, linear algebra and multilinear algebra. The field has its origins in the study of spherical geometry as far back as classical antiquity, antiquity. It also relates to astronomy, the geodesy of the Earth, and later the study of hyperbolic geometry by Nikolai Lobachevsky, Lobachevsky. The simplest examples of smooth spaces are the Differential geometry of curves, plane and space curves and Differential geometry of surfaces, surfaces in the three-dimensional Euclidean space, and the study of these shapes formed the basis for development of modern differential geometry during the 18th and 19th centuries. Since the late 19th century, differential geometry has grown into a field concerned more generally with geometric structures on differentiable ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Analytic Geometry
In mathematics, analytic geometry, also known as coordinate geometry or Cartesian geometry, is the study of geometry using a coordinate system. This contrasts with synthetic geometry. Analytic geometry is used in physics and engineering, and also in aviation, Aerospace engineering, rocketry, space science, and spaceflight. It is the foundation of most modern fields of geometry, including Algebraic geometry, algebraic, Differential geometry, differential, Discrete geometry, discrete and computational geometry. Usually the Cartesian coordinate system is applied to manipulate equations for planes, straight lines, and circles, often in two and sometimes three dimensions. Geometrically, one studies the Euclidean plane (two dimensions) and Euclidean space. As taught in school books, analytic geometry can be explained more simply: it is concerned with defining and representing geometric shapes in a numerical way and extracting numerical information from shapes' numerical definitions and ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Model Theory
In mathematical logic, model theory is the study of the relationship between theory (mathematical logic), formal theories (a collection of Sentence (mathematical logic), sentences in a formal language expressing statements about a Structure (mathematical logic), mathematical structure), and their Structure (mathematical logic), models (those Structure (mathematical logic), structures in which the statements of the theory hold). The aspects investigated include the number and size of models of a theory, the relationship of different models to each other, and their interaction with the formal language itself. In particular, model theorists also investigate the sets that can be definable set, defined in a model of a theory, and the relationship of such definable sets to each other. As a separate discipline, model theory goes back to Alfred Tarski, who first used the term "Theory of Models" in publication in 1954. Since the 1970s, the subject has been shaped decisively by Saharon Shel ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Auxiliary Function
In mathematics, auxiliary functions are an important construction in transcendental number theory. They are functions that appear in most proofs in this area of mathematics and that have specific, desirable properties, such as taking the value zero for many arguments, or having a zero of high order at some point. Definition Auxiliary functions are not a rigorously defined kind of function, rather they are functions which are either explicitly constructed or at least shown to exist and which provide a contradiction to some assumed hypothesis, or otherwise prove the result in question. Creating a function during the course of a proof in order to prove the result is not a technique exclusive to transcendence theory, but the term "auxiliary function" usually refers to the functions created in this area. Explicit functions Liouville's transcendence criterion Because of the naming convention mentioned above, auxiliary functions can be dated back to their source simply by looking at ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Transcendental Number Theory
Transcendental number theory is a branch of number theory that investigates transcendental numbers (numbers that are not solutions of any polynomial equation with rational coefficients), in both qualitative and quantitative ways. Transcendence The fundamental theorem of algebra tells us that if we have a non-constant polynomial with rational coefficients (or equivalently, by clearing denominators, with integer coefficients) then that polynomial will have a root in the complex numbers. That is, for any non-constant polynomial P with rational coefficients there will be a complex number \alpha such that P(\alpha)=0. Transcendence theory is concerned with the converse question: given a complex number \alpha, is there a polynomial P with rational coefficients such that P(\alpha)=0? If no such polynomial exists then the number is called transcendental. More generally the theory deals with algebraic independence of numbers. A set of numbers is called algebraically independen ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Factor Theorem
In algebra, the factor theorem connects polynomial factors with polynomial roots. Specifically, if f(x) is a polynomial, then x - a is a factor of f(x) if and only if f (a) = 0 (that is, a is a root of the polynomial). The theorem is a special case of the polynomial remainder theorem. The theorem results from basic properties of addition and multiplication. It follows that the theorem holds also when the coefficients and the element a belong to any commutative ring, and not just a field. In particular, since multivariate polynomials can be viewed as univariate in one of their variables, the following generalization holds : If f(X_1,\ldots,X_n) and g(X_2, \ldots,X_n) are multivariate polynomials and g is independent of X_1, then X_1 - g(X_2, \ldots,X_n) is a factor of f(X_1,\ldots,X_n) if and only if f(g(X_2, \ldots,X_n),X_2, \ldots,X_n) is the zero polynomial. Factorization of polynomials Two problems where the factor theorem is commonly applied are those of factoring a polyn ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]