Exponential Object
In mathematics, specifically in category theory, an exponential object or map object is the category theory, categorical generalization of a function space in set theory. Category (mathematics), Categories with all Product (category theory), finite products and exponential objects are called Cartesian closed category, cartesian closed categories. Categories (such as Subcategory, subcategories of category of topological spaces, Top) without adjoined products may still have an exponential law. Definition Let \mathbf be a category, let Z and Y be object (category theory), objects of \mathbf, and let \mathbf have all product (category theory), binary products with Y. An object Z^Y together with a morphism \mathrm\colon (Z^Y \times Y) \to Z is an ''exponential object'' if for any object X and morphism g \colon X\times Y \to Z there is a unique morphism \lambda g\colon X\to Z^Y (called the ''transpose'' of g) such that the following diagram commutative diagram, commutes: This assignme ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
![]() |
Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
Functor
In mathematics, specifically category theory, a functor is a Map (mathematics), mapping between Category (mathematics), categories. Functors were first considered in algebraic topology, where algebraic objects (such as the fundamental group) are associated to topological spaces, and maps between these algebraic objects are associated to continuous function, continuous maps between spaces. Nowadays, functors are used throughout modern mathematics to relate various categories. Thus, functors are important in all areas within mathematics to which category theory is applied. The words ''category'' and ''functor'' were borrowed by mathematicians from the philosophers Aristotle and Rudolf Carnap, respectively. The latter used ''functor'' in a Linguistics, linguistic context; see function word. Definition Let ''C'' and ''D'' be category (mathematics), categories. A functor ''F'' from ''C'' to ''D'' is a mapping that * associates each Mathematical object, object X in ''C'' to ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Continuous Function (topology)
In mathematics, a continuous function is a function (mathematics), function such that a small variation of the argument of a function, argument induces a small variation of the Value (mathematics), value of the function. This implies there are no abrupt changes in value, known as ''Classification of discontinuities, discontinuities''. More precisely, a function is continuous if arbitrarily small changes in its value can be assured by restricting to sufficiently small changes of its argument. A discontinuous function is a function that is . Until the 19th century, mathematicians largely relied on Intuition, intuitive notions of continuity and considered only continuous functions. The (ε, δ)-definition of limit, epsilon–delta definition of a limit was introduced to formalize the definition of continuity. Continuity is one of the core concepts of calculus and mathematical analysis, where arguments and values of functions are real number, real and complex number, complex numbers. ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Hausdorff Space
In topology and related branches of mathematics, a Hausdorff space ( , ), T2 space or separated space, is a topological space where distinct points have disjoint neighbourhoods. Of the many separation axioms that can be imposed on a topological space, the "Hausdorff condition" (T2) is the most frequently used and discussed. It implies the uniqueness of limits of sequences, nets, and filters. Hausdorff spaces are named after Felix Hausdorff, one of the founders of topology. Hausdorff's original definition of a topological space (in 1914) included the Hausdorff condition as an axiom. Definitions Points x and y in a topological space X can be '' separated by neighbourhoods'' if there exists a neighbourhood U of x and a neighbourhood V of y such that U and V are disjoint (U\cap V=\varnothing). X is a Hausdorff space if any two distinct points in X are separated by neighbourhoods. This condition is the third separation axiom (after T0 and T1), which is why Hausdorff ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Locally Compact Space
In topology and related branches of mathematics, a topological space is called locally compact if, roughly speaking, each small portion of the space looks like a small portion of a compact space. More precisely, it is a topological space in which every point has a compact neighborhood. When locally compact spaces are Hausdorff they are called locally compact Hausdorff, which are of particular interest in mathematical analysis. Formal definition Let ''X'' be a topological space. Most commonly ''X'' is called locally compact if every point ''x'' of ''X'' has a compact neighbourhood, i.e., there exists an open set ''U'' and a compact set ''K'', such that x\in U\subseteq K. There are other common definitions: They are all equivalent if ''X'' is a Hausdorff space (or preregular). But they are not equivalent in general: :1. every point of ''X'' has a compact neighbourhood. :2. every point of ''X'' has a closed compact neighbourhood. :2′. every point of ''X'' has a relatively comp ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Join And Meet
In mathematics, specifically order theory, the join of a subset S of a partially ordered set P is the supremum (least upper bound) of S, denoted \bigvee S, and similarly, the meet of S is the infimum (greatest lower bound), denoted \bigwedge S. In general, the join and meet of a subset of a partially ordered set need not exist. Join and meet are Duality (order theory), dual to one another with respect to order inversion. A partially ordered set in which all pairs have a join is a join-semilattice. Dually, a partially ordered set in which all pairs have a meet is a meet-semilattice. A partially ordered set that is both a join-semilattice and a meet-semilattice is a Lattice (order), lattice. A lattice in which every subset, not just every pair, possesses a meet and a join is a complete lattice. It is also possible to define a partial lattice, in which not all pairs have a meet or join but the operations (when defined) satisfy certain axioms. The join/meet of a subset of a Tot ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Lattice (order)
A lattice is an abstract structure studied in the mathematical subdisciplines of order theory and abstract algebra. It consists of a partially ordered set in which every pair of elements has a unique supremum (also called a least upper bound or join (mathematics), join) and a unique infimum (also called a greatest lower bound or meet (mathematics), meet). An example is given by the power set of a set, partially ordered by Subset, inclusion, for which the supremum is the Union (set theory), union and the infimum is the Intersection (set theory), intersection. Another example is given by the natural numbers, partially ordered by divisibility, for which the supremum is the least common multiple and the infimum is the greatest common divisor. Lattices can also be characterized as algebraic structures satisfying certain axiomatic Identity (mathematics), identities. Since the two definitions are equivalent, lattice theory draws on both order theory and universal algebra. Semilatti ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Heyting Algebra
In mathematics, a Heyting algebra (also known as pseudo-Boolean algebra) is a bounded lattice (with join and meet operations written ∨ and ∧ and with least element 0 and greatest element 1) equipped with a binary operation ''a'' → ''b'' called ''implication'' such that (''c'' ∧ ''a'') ≤ ''b'' is equivalent to ''c'' ≤ (''a'' → ''b''). From a logical standpoint, ''A'' → ''B'' is by this definition the weakest proposition for which modus ponens, the inference rule ''A'' → ''B'', ''A'' ⊢ ''B'', is sound. Like Boolean algebras, Heyting algebras form a variety axiomatizable with finitely many equations. Heyting algebras were introduced in 1930 by Arend Heyting to formalize intuitionistic logic. Heyting algebras are distributive lattices. Every Boolean algebra is a Heyting algebra when ''a'' → ''b'' is defined as ¬''a'' ∨ ''b'', as is every complete distributive lattice satisfying a one-sided infinite distributive law when ''a'' → ''b'' is taken to be t ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Currying
In mathematics and computer science, currying is the technique of translating a function that takes multiple arguments into a sequence of families of functions, each taking a single argument. In the prototypical example, one begins with a function f:(X\times Y)\to Z that takes two arguments, one from X and one from Y, and produces objects in Z. The curried form of this function treats the first argument as a parameter, so as to create a family of functions f_x :Y\to Z. The family is arranged so that for each object x in X, there is exactly one function f_x. In this example, \mbox itself becomes a function that takes f as an argument, and returns a function that maps each x to f_x. The proper notation for expressing this is verbose. The function f belongs to the set of functions (X\times Y)\to Z. Meanwhile, f_x belongs to the set of functions Y\to Z. Thus, something that maps x to f_x will be of the type X\to \to Z With this notation, \mbox is a function that takes objects from ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Apply
In mathematics and computer science, apply is a function that applies a function to arguments. It is central to programming languages derived from lambda calculus, such as LISP and Scheme, and also in functional languages. It has a role in the study of the denotational semantics of computer programs, because it is a continuous function on complete partial orders. Apply is also a continuous function in homotopy theory, and, indeed underpins the entire theory: it allows a homotopy deformation to be viewed as a continuous path in the space of functions. Likewise, valid mutations (refactorings) of computer programs can be seen as those that are "continuous" in the Scott topology. The most general setting for apply is in category theory, where it is right adjoint to currying in closed monoidal categories. A special case of this are the Cartesian closed categories, whose internal language is simply typed lambda calculus. Programming In computer programming, apply applies a fu ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Function (mathematics)
In mathematics, a function from a set (mathematics), set to a set assigns to each element of exactly one element of .; the words ''map'', ''mapping'', ''transformation'', ''correspondence'', and ''operator'' are sometimes used synonymously. The set is called the Domain of a function, domain of the function and the set is called the codomain of the function. Functions were originally the idealization of how a varying quantity depends on another quantity. For example, the position of a planet is a ''function'' of time. History of the function concept, Historically, the concept was elaborated with the infinitesimal calculus at the end of the 17th century, and, until the 19th century, the functions that were considered were differentiable function, differentiable (that is, they had a high degree of regularity). The concept of a function was formalized at the end of the 19th century in terms of set theory, and this greatly increased the possible applications of the concept. A f ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Category Of Sets
In the mathematical field of category theory, the category of sets, denoted by Set, is the category whose objects are sets. The arrows or morphisms between sets ''A'' and ''B'' are the functions from ''A'' to ''B'', and the composition of morphisms is the composition of functions. Many other categories (such as the category of groups, with group homomorphisms as arrows) add structure to the objects of the category of sets or restrict the arrows to functions of a particular kind (or both). Properties of the category of sets The axioms of a category are satisfied by Set because composition of functions is associative, and because every set ''X'' has an identity function id''X'' : ''X'' → ''X'' which serves as identity element for function composition. The epimorphisms in Set are the surjective maps, the monomorphisms are the injective maps, and the isomorphisms are the bijective maps. The empty set serves as the initial object in Set with empty functions as morph ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |