HOME





Excellent Ring
In commutative algebra, a quasi-excellent ring is a Noetherian ring, Noetherian commutative ring that behaves well with respect to the operation of completion of a ring, completion, and is called an excellent ring if it is also universally catenary. Excellent rings are one answer to the problem of finding a natural class of "well-behaved" ring (mathematics), rings containing most of the rings that occur in number theory and algebraic geometry. At one time it seemed that the class of Noetherian rings might be an answer to this problem, but Masayoshi Nagata and others found several strange counterexamples showing that in general Noetherian rings need not be well-behaved: for example, a normal Noetherian local ring need not be analytically normal. The class of excellent rings was defined by Alexander Grothendieck (1965) as a candidate for such a class of well-behaved rings. Quasi-excellent rings are conjectured to be the base rings for which the problem of resolution of singularities ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Commutative Algebra
Commutative algebra, first known as ideal theory, is the branch of algebra that studies commutative rings, their ideal (ring theory), ideals, and module (mathematics), modules over such rings. Both algebraic geometry and algebraic number theory build on commutative algebra. Prominent examples of commutative rings include polynomial rings; rings of algebraic integers, including the ordinary integers \mathbb; and p-adic number, ''p''-adic integers. Commutative algebra is the main technical tool of algebraic geometry, and many results and concepts of commutative algebra are strongly related with geometrical concepts. The study of rings that are not necessarily commutative is known as noncommutative algebra; it includes ring theory, representation theory, and the theory of Banach algebras. Overview Commutative algebra is essentially the study of the rings occurring in algebraic number theory and algebraic geometry. Several concepts of commutative algebras have been developed in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Complete Ring
In mathematics, a topological ring is a ring R that is also a topological space such that both the addition and the multiplication are continuous as maps: R \times R \to R where R \times R carries the product topology. That means R is an additive topological group and a multiplicative topological semigroup. Topological rings are fundamentally related to topological fields and arise naturally while studying them, since for example completion of a topological field may be a topological ring which is not a field. General comments The group of units R^\times of a topological ring R is a topological group when endowed with the topology coming from the embedding of R^\times into the product R \times R as \left(x, x^\right). However, if the unit group is endowed with the subspace topology as a subspace of R, it may not be a topological group, because inversion on R^\times need not be continuous with respect to the subspace topology. An example of this situation is the adele ring of a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Krull Dimension
In commutative algebra, the Krull dimension of a commutative ring ''R'', named after Wolfgang Krull, is the supremum of the lengths of all chains of prime ideals. The Krull dimension need not be finite even for a Noetherian ring. More generally the Krull dimension can be defined for modules over possibly non-commutative rings as the deviation of the poset of submodules. The Krull dimension was introduced to provide an algebraic definition of the dimension of an algebraic variety: the dimension of the affine variety defined by an ideal ''I'' in a polynomial ring ''R'' is the Krull dimension of ''R''/''I''. A field ''k'' has Krull dimension 0; more generally, ''k'' 'x''1, ..., ''x''''n''has Krull dimension ''n''. A principal ideal domain that is not a field has Krull dimension 1. A local ring has Krull dimension 0 if and only if every element of its maximal ideal is nilpotent. There are several other ways that have been used to define the dimension of a ring. Most of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Prime Ideal
In algebra, a prime ideal is a subset of a ring (mathematics), ring that shares many important properties of a prime number in the ring of Integer#Algebraic properties, integers. The prime ideals for the integers are the sets that contain all the multiple (mathematics), multiples of a given prime number, together with the zero ideal. Primitive ideals are prime, and prime ideals are both primary ideal, primary and semiprime ideal, semiprime. Prime ideals for commutative rings Definition An ideal (ring theory), ideal of a commutative ring is prime if it has the following two properties: * If and are two elements of such that their product is an element of , then is in or is in , * is not the whole ring . This generalizes the following property of prime numbers, known as Euclid's lemma: if is a prime number and if divides a product of two integers, then divides or divides . We can therefore say :A positive integer is a prime number if and only if n\Z is a prime ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Algebra Of Finite Type
In mathematics, a finitely generated algebra (also called an algebra of finite type) is a commutative associative algebra ''A'' over a field ''K'' where there exists a finite set of elements a_1,\dots,a_n of ''A'' such that every element of ''A'' can be expressed as a polynomial in a_1,\dots,a_n, with coefficients in ''K''. Equivalently, there exist elements a_1,\dots,a_n\in A such that the evaluation homomorphism at =(a_1,\dots,a_n) :\phi_\colon K _1,\dots,X_ntwoheadrightarrow A is surjective; thus, by applying the first isomorphism theorem, A \simeq K _1,\dots,X_n(\phi_). Conversely, A:= K _1,\dots,X_nI for any ideal I\subseteq K _1,\dots,X_n/math> is a K-algebra of finite type, indeed any element of A is a polynomial in the cosets a_i:=X_i+I, i=1,\dots,n with coefficients in K. Therefore, we obtain the following characterisation of finitely generated K-algebras :A is a finitely generated K-algebra if and only if it is isomorphic as a K-algebra to a quotient ring of the type ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


J-2 Ring
In commutative algebra, a J-0 ring is a ring R such that the set of regular points, that is, points p of the spectrum at which the localization R_p is a regular local ring, contains a non-empty open subset, a J-1 ring is a ring such that the set of regular points is an open subset, and a J-2 ring is a ring such that any finitely generated algebra over the ring is a J-1 ring. Examples Most rings that occur in algebraic geometry or number theory are J-2 rings, and in fact it is not trivial to construct any examples of rings that are not. In particular all excellent rings are J-2 rings; in fact this is part of the definition of an excellent ring. All Dedekind domains of characteristic 0 and all local Noetherian rings of dimension at most 1 are J-2 rings. The family of J-2 rings is closed under taking localizations and finitely generated algebras. For an example of a Noetherian domain that is not a J-0 ring, take ''R'' to be the subring of the polynomial ring ''k'' 'x''1,''x''2,. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


G-ring
In commutative algebra, a G-ring or Grothendieck ring is a Noetherian ring such that the map of any of its local rings to the completion is regular (defined below). Almost all Noetherian rings that occur naturally in algebraic geometry or number theory are G-rings, and it is quite hard to construct examples of Noetherian rings that are not G-rings. The concept is named after Alexander Grothendieck. A ring that is both a G-ring and a J-2 ring is called a quasi-excellent ring, and if in addition it is universally catenary it is called an excellent ring. Definitions *A (Noetherian) ring ''R'' containing a field ''k'' is called geometrically regular over ''k'' if for any finite extension ''K'' of ''k'' the ring ''R'' ⊗''k'' ''K'' is a regular ring. *A homomorphism of rings from ''R'' to ''S'' is called regular if it is flat and for every ''p'' ∈ Spec(''R'') the fiber ''S'' ⊗''R'' ''k''(''p'') is geometrically regular over the residue field ''k' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Flat Ring Homomorphism
In algebra, flat modules include free modules, projective modules, and, over a principal ideal domain, torsion-free modules. Formally, a module ''M'' over a ring ''R'' is ''flat'' if taking the tensor product over ''R'' with ''M'' preserves exact sequences. A module is faithfully flat if taking the tensor product with a sequence produces an exact sequence if and only if the original sequence is exact. Flatness was introduced by in his paper '' Géometrie Algébrique et Géométrie Analytique''. Definition A left module over a ring is ''flat'' if the following condition is satisfied: for every injective linear map \varphi: K \to L of right -modules, the map : \varphi \otimes_R M: K \otimes_R M \to L \otimes_R M is also injective, where \varphi \otimes_R M is the map induced by k \otimes m \mapsto \varphi(k) \otimes m. For this definition, it is enough to restrict the injections \varphi to the inclusions of finitely generated ideals into . Equivalently, an -module is flat ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Ring Homomorphism
In mathematics, a ring homomorphism is a structure-preserving function between two rings. More explicitly, if ''R'' and ''S'' are rings, then a ring homomorphism is a function that preserves addition, multiplication and multiplicative identity; that is, : \begin f(a+b)&= f(a) + f(b),\\ f(ab) &= f(a)f(b), \\ f(1_R) &= 1_S, \end for all ''a'', ''b'' in ''R''. These conditions imply that additive inverses and the additive identity are also preserved. If, in addition, is a bijection, then its inverse −1 is also a ring homomorphism. In this case, is called a ring isomorphism, and the rings ''R'' and ''S'' are called ''isomorphic''. From the standpoint of ring theory, isomorphic rings have exactly the same properties. If ''R'' and ''S'' are s, then the corresponding notion is that of a homomorphism, defined as above except without the third condition ''f''(1''R'') = 1''S''. A homomorphism between (unital) rings need not be a ring homomorphism. The composition of two rin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Regular Ring
In commutative algebra, a regular local ring is a Noetherian local ring having the property that the minimal number of generators of its maximal ideal is equal to its Krull dimension. In symbols, let A be any Noetherian local ring with unique maximal ideal \mathfrak, and suppose a_1,\cdots,a_n is a minimal set of generators of \mathfrak. Then Krull's principal ideal theorem implies that n\geq\dim A, and A is regular whenever n=\dim A. The concept is motivated by its geometric meaning. A point x on an algebraic variety X is nonsingular (a smooth point) if and only if the local ring \mathcal_ of germs at x is regular. (See also: regular scheme.) Regular local rings are ''not'' related to von Neumann regular rings. For Noetherian local rings, there is the following chain of inclusions: Characterizations There are a number of useful definitions of a regular local ring, one of which is mentioned above. In particular, if A is a Noetherian local ring with maximal ideal \mathfrak, th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Finite Extension
In mathematics, more specifically field theory, the degree of a field extension is a rough measure of the "size" of the field extension. The concept plays an important role in many parts of mathematics, including algebra and number theory—indeed in any area where fields appear prominently. Definition and notation Suppose that ''E''/''F'' is a field extension. Then ''E'' may be considered as a vector space over ''F'' (the field of scalars). The dimension of this vector space is called the degree of the field extension, and it is denoted by 'E'':''F'' The degree may be finite or infinite, the field being called a finite extension or infinite extension accordingly. An extension ''E''/''F'' is also sometimes said to be simply finite if it is a finite extension; this should not be confused with the fields themselves being finite fields (fields with finitely many elements). The degree should not be confused with the transcendence degree of a field; for example, the field Q(' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Geometrically Regular
In algebraic geometry, a geometrically regular ring is a Noetherian ring over a field that remains a regular ring after any finite extension of the base field. Geometrically regular schemes are defined in a similar way. In older terminology, points with regular local rings were called simple points, and points with geometrically regular local rings were called absolutely simple points. Over fields that are of characteristic 0, or algebraically closed, or more generally perfect, geometrically regular rings are the same as regular rings. Geometric regularity originated when Claude Chevalley and André Weil pointed out to that, over non-perfect fields, the Jacobian criterion for a simple point of an algebraic variety is not equivalent to the condition that the local ring is regular. A Noetherian local ring containing a field ''k'' is geometrically regular over ''k'' if and only if it is formally smooth over ''k''. Examples gave the following two examples of local rings th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]