Eternal Dominating Set
In graph theory, an eternal dominating set for a graph ''G'' = (''V'', ''E'') is a subset ''D'' of ''V'' such that ''D'' is a dominating set on which mobile guards are initially located (at most one guard may be located on any vertex). The set ''D'' must be such that for any infinite sequence of attacks occurring sequentially at vertices, the set ''D'' can be modified by moving a guard from an adjacent vertex to the attacked vertex, provided the attacked vertex has no guard on it at the time it is attacked. The configuration of guards after each attack must induce a dominating set. The eternal domination number, ''γ''∞(''G''), is the minimum number of vertices possible in the initial set ''D''. For example, the eternal domination number of the cycle on five vertices is two. The eternal dominating set problem, also known as the eternal domination problem and the eternal security problem, can also be interpreted as a combinatorial game played between two player ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Graph Theory
In mathematics, graph theory is the study of '' graphs'', which are mathematical structures used to model pairwise relations between objects. A graph in this context is made up of '' vertices'' (also called ''nodes'' or ''points'') which are connected by ''edges'' (also called ''links'' or ''lines''). A distinction is made between undirected graphs, where edges link two vertices symmetrically, and directed graphs, where edges link two vertices asymmetrically. Graphs are one of the principal objects of study in discrete mathematics. Definitions Definitions in graph theory vary. The following are some of the more basic ways of defining graphs and related mathematical structures. Graph In one restricted but very common sense of the term, a graph is an ordered pair G=(V,E) comprising: * V, a set of vertices (also called nodes or points); * E \subseteq \, a set of edges (also called links or lines), which are unordered pairs of vertices (that is, an edge is associated with t ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Graph (discrete Mathematics)
In discrete mathematics, and more specifically in graph theory, a graph is a structure amounting to a set of objects in which some pairs of the objects are in some sense "related". The objects correspond to mathematical abstractions called '' vertices'' (also called ''nodes'' or ''points'') and each of the related pairs of vertices is called an ''edge'' (also called ''link'' or ''line''). Typically, a graph is depicted in diagrammatic form as a set of dots or circles for the vertices, joined by lines or curves for the edges. Graphs are one of the objects of study in discrete mathematics. The edges may be directed or undirected. For example, if the vertices represent people at a party, and there is an edge between two people if they shake hands, then this graph is undirected because any person ''A'' can shake hands with a person ''B'' only if ''B'' also shakes hands with ''A''. In contrast, if an edge from a person ''A'' to a person ''B'' means that ''A'' owes money to ''B'', th ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Subset
In mathematics, set ''A'' is a subset of a set ''B'' if all elements of ''A'' are also elements of ''B''; ''B'' is then a superset of ''A''. It is possible for ''A'' and ''B'' to be equal; if they are unequal, then ''A'' is a proper subset of ''B''. The relationship of one set being a subset of another is called inclusion (or sometimes containment). ''A'' is a subset of ''B'' may also be expressed as ''B'' includes (or contains) ''A'' or ''A'' is included (or contained) in ''B''. A ''k''-subset is a subset with ''k'' elements. The subset relation defines a partial order on sets. In fact, the subsets of a given set form a Boolean algebra under the subset relation, in which the join and meet are given by intersection and union, and the subset relation itself is the Boolean inclusion relation. Definition If ''A'' and ''B'' are sets and every element of ''A'' is also an element of ''B'', then: :*''A'' is a subset of ''B'', denoted by A \subseteq B, or equivalently, :* ''B'' ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Dominating Set
In graph theory, a dominating set for a graph is a subset of its vertices, such that any vertex of is either in , or has a neighbor in . The domination number is the number of vertices in a smallest dominating set for . The dominating set problem concerns testing whether for a given graph and input ; it is a classical NP-complete decision problem in computational complexity theory. Therefore it is believed that there may be no efficient algorithm that can compute for all graphs . However, there are efficient approximation algorithms, as well as efficient exact algorithms for certain graph classes. Dominating sets are of practical interest in several areas. In wireless networking, dominating sets are used to find efficient routes within ad-hoc mobile networks. They have also been used in document summarization, and in designing secure systems for electrical grids. Formal definition Given an undirected graph , a subset of vertices D\subseteq V is called a dominating ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Combinatorial Game
Combinatorial game theory is a branch of mathematics and theoretical computer science that typically studies sequential games with perfect information. Study has been largely confined to two-player games that have a ''position'' that the players take turns changing in defined ways or ''moves'' to achieve a defined winning condition. Combinatorial game theory has not traditionally studied games of chance or those that use imperfect or incomplete information, favoring games that offer perfect information in which the state of the game and the set of available moves is always known by both players. However, as mathematical techniques advance, the types of game that can be mathematically analyzed expands, thus the boundaries of the field are ever changing. Scholars will generally define what they mean by a "game" at the beginning of a paper, and these definitions often vary as they are specific to the game being analyzed and are not meant to represent the entire scope of the field. ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
K-server Problem
The -server problem is a problem of theoretical computer science in the category of online algorithms, one of two abstract problems on metric spaces that are central to the theory of competitive analysis (the other being metrical task systems). In this problem, an online algorithm must control the movement of a set of ''k'' ''servers'', represented as points in a metric space, and handle ''requests'' that are also in the form of points in the space. As each request arrives, the algorithm must determine which server to move to the requested point. The goal of the algorithm is to keep the total distance all servers move small, relative to the total distance the servers could have moved by an optimal adversary who knows in advance the entire sequence of requests. The problem was first posed by Mark Manasse, Lyle A. McGeoch and Daniel Sleator (1988). The most prominent open question concerning the ''k''-server problem is the so-called ''k''-server conjecture, also posed by Manasse ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Chromatic Number
In graph theory, graph coloring is a special case of graph labeling; it is an assignment of labels traditionally called "colors" to elements of a graph subject to certain constraints. In its simplest form, it is a way of coloring the vertices of a graph such that no two adjacent vertices are of the same color; this is called a vertex coloring. Similarly, an edge coloring assigns a color to each edge so that no two adjacent edges are of the same color, and a face coloring of a planar graph assigns a color to each face or region so that no two faces that share a boundary have the same color. Vertex coloring is often used to introduce graph coloring problems, since other coloring problems can be transformed into a vertex coloring instance. For example, an edge coloring of a graph is just a vertex coloring of its line graph, and a face coloring of a plane graph is just a vertex coloring of its dual. However, non-vertex coloring problems are often stated and studied as-is. This is p ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Perfect Graph Theorem
In graph theory, the perfect graph theorem of states that an undirected graph is perfect if and only if its complement graph is also perfect. This result had been conjectured by , and it is sometimes called the weak perfect graph theorem to distinguish it from the strong perfect graph theorem characterizing perfect graphs by their forbidden induced subgraphs. Statement A perfect graph is an undirected graph with the property that, in every one of its induced subgraphs, the size of the largest clique equals the minimum number of colors in a coloring of the subgraph. Perfect graphs include many important graphs classes including bipartite graphs, chordal graphs, and comparability graphs. The complement of a graph has an edge between two vertices if and only if the original graph does not have an edge between the same two vertices. Thus, a clique in the original graph becomes an independent set in the complement and a coloring of the original graph becomes a clique cover of the ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Cayley Graph
In mathematics, a Cayley graph, also known as a Cayley color graph, Cayley diagram, group diagram, or color group is a graph that encodes the abstract structure of a group. Its definition is suggested by Cayley's theorem (named after Arthur Cayley), and uses a specified set of generators for the group. It is a central tool in combinatorial and geometric group theory. The structure and symmetry of Cayley graphs makes them particularly good candidates for constructing families of expander graphs. Definition Let G be a group and S be a generating set of G. The Cayley graph \Gamma = \Gamma(G,S) is an edge-colored directed graph constructed as follows: In his Collected Mathematical Papers 10: 403–405. * Each element g of G is assigned a vertex: the vertex set of \Gamma is identified with G. * Each element s of S is assigned a color c_s. * For every g \in G and s \in S, there is a directed edge of color c_s from the vertex corresponding to g to the one corresponding to gs. ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Vizing's Conjecture
In graph theory, Vizing's conjecture concerns a relation between the domination number and the cartesian product of graphs. This conjecture was first stated by , and states that, if denotes the minimum number of vertices in a dominating set for the graph , then : \gamma(G\,\Box\,H) \ge \gamma(G)\gamma(H). \, conjectured a similar bound for the domination number of the tensor product of graphs; however, a counterexample was found by . Since Vizing proposed his conjecture, many mathematicians have worked on it, with partial results described below. For a more detailed overview of these results, see . Examples A 4-cycle has domination number two: any single vertex only dominates itself and its two neighbors, but any pair of vertices dominates the whole graph. The product is a four-dimensional hypercube graph; it has 16 vertices, and any single vertex can only dominate itself and four neighbors, so three vertices could only dominate 15 of the 16 vertices. Therefore, at ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Douglas West (mathematician)
Douglas Brent West is a professor of graph theory at University of Illinois at Urbana-Champaign. He received his Ph.D. from Massachusetts Institute of Technology in 1978; his advisor was Daniel Kleitman. He is the "W" in G. W. Peck, a pseudonym for a group of six mathematicians that includes West.. He is the editor of the journal ''Discrete Mathematics''. Selected work Books * ''Introduction to Graph Theory'' - Second edition, Douglas B. West. Published by Prentice Hall 1996, 2001. * ''Mathematical Thinking: Problem-Solving and Proofs'' Second edition, John P D'Angelo and Douglas West. Published by Prentice Hall 1999. Research work * Spanning trees with many leaves, DJ Kleitman, DB West - SIAM Journal on Discrete Mathematics, 1991. * Class of Solutions to the Gossip Problem, Part II, DB West - Discrete Mathematics, 1982. * The interval number of a planar graph: three intervals suffice, ER Scheinerman, DB West - Journal of combinatorial theory. Series B, 1983. See also * ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Lovász Number
In graph theory, the Lovász number of a graph is a real number that is an upper bound on the Shannon capacity of the graph. It is also known as Lovász theta function and is commonly denoted by \vartheta(G), using a script form of the Greek letter theta to contrast with the upright theta used for Shannon capacity. This quantity was first introduced by László Lovász in his 1979 paper ''On the Shannon Capacity of a Graph''. Accurate numerical approximations to this number can be computed in polynomial time by semidefinite programming and the ellipsoid method. It is sandwiched between the chromatic number and clique number of any graph, and can be used to compute these numbers on graphs for which they are equal, including perfect graphs. Definition Let G=(V,E) be a graph on n vertices. An ordered set of n unit vectors U=(u_i\mid i\in V)\subset\mathbb^N is called an orthonormal representation of G in \mathbb^N, if u_i and u_j are orthogonal whenever vertices i and j are not adjac ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |