Enveloping Algebra Of An Associative Algebra
In mathematics, an associative algebra ''A'' over a commutative ring (often a field) ''K'' is a ring ''A'' together with a ring homomorphism from ''K'' into the center of ''A''. This is thus an algebraic structure with an addition, a multiplication, and a scalar multiplication (the multiplication by the image of the ring homomorphism of an element of ''K''). The addition and multiplication operations together give ''A'' the structure of a ring; the addition and scalar multiplication operations together give ''A'' the structure of a module or vector space over ''K''. In this article we will also use the term ''K''-algebra to mean an associative algebra over ''K''. A standard first example of a ''K''-algebra is a ring of square matrices over a commutative ring ''K'', with the usual matrix multiplication. A commutative algebra is an associative algebra for which the multiplication is commutative, or, equivalently, an associative algebra that is also a commutative ring. In ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Monoid (category Theory)
In category theory, a branch of mathematics, a monoid (or monoid object, or internal monoid, or algebra) in a monoidal category is an object ''M'' together with two morphisms * ''μ'': ''M'' ⊗ ''M'' → ''M'' called ''multiplication'', * ''η'': ''I'' → ''M'' called ''unit'', such that the pentagon diagram : and the unitor diagram : commute. In the above notation, 1 is the identity morphism of ''M'', ''I'' is the unit element and ''α'', ''λ'' and ''ρ'' are respectively the associativity, the left identity and the right identity of the monoidal category C. Dually, a comonoid in a monoidal category C is a monoid in the dual category Cop. Suppose that the monoidal category C has a braiding ''γ''. A monoid ''M'' in C is commutative when . Examples * A monoid object in Set, the category of sets (with the monoidal structure induced by the Cartesian product), is a monoid in the usual sense. * A monoid object in Top, the category of topological spaces (with the monoidal ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Generic Matrix Ring
In algebra, a generic matrix ring is a sort of a universal matrix ring. Definition We denote by F_n a generic matrix ring of size ''n'' with variables X_1, \dots X_m. It is characterized by the universal property: given a commutative ring ''R'' and ''n''-by-''n'' matrices A_1, \dots, A_m over ''R'', any mapping X_i \mapsto A_i extends to the ring homomorphism (called evaluation) F_n \to M_n(R). Explicitly, given a field ''k'', it is the subalgebra F_n of the matrix ring M_n(k X_l)_ \mid 1 \le l \le m,\ 1 \le i, j \le n generated by ''n''-by-''n'' matrices X_1, \dots, X_m, where (X_l)_ are matrix entries and commute by definition. For example, if ''m'' = 1 then F_1 is a polynomial ring in one variable. For example, a central polynomial is an element of the ring F_n that will map to a central element under an evaluation. (In fact, it is in the invariant ring k X_l)_ since it is central and invariant.) By definition, F_n is a quotient of the free ring k\langle t_1 ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Derived Algebraic Geometry
Derived algebraic geometry is a branch of mathematics that generalizes algebraic geometry to a situation where commutative rings, which provide local charts, are replaced by either differential graded algebras (over \mathbb), simplicial commutative rings or E_-ring spectra from algebraic topology, whose higher homotopy groups account for the non-discreteness (e.g., Tor) of the structure sheaf. Grothendieck's scheme theory allows the structure sheaf to carry nilpotent elements. Derived algebraic geometry can be thought of as an extension of this idea, and provides natural settings for intersection theory (or motivic homotopy theory) of singular algebraic varieties and cotangent complexes in deformation theory (cf. J. Francis), among the other applications. Introduction Basic objects of study in the field are derived schemes and derived stacks. The oft-cited motivation is Serre's intersection formula. In the usual formulation, the formula involves the Tor functor and thus, un ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Noncommutative Algebraic Geometry
Noncommutative algebraic geometry is a branch of mathematics, and more specifically a direction in noncommutative geometry, that studies the geometric properties of formal duals of non-commutative algebraic objects such as rings as well as geometric objects derived from them (e.g. by gluing along localizations or taking noncommutative stack quotients). For example, noncommutative algebraic geometry is supposed to extend a notion of an algebraic scheme by suitable gluing of spectra of noncommutative rings; depending on how literally and how generally this aim (and a notion of spectrum) is understood in noncommutative setting, this has been achieved in various level of success. The noncommutative ring generalizes here a commutative ring of regular functions on a commutative scheme. Functions on usual spaces in the traditional (commutative) algebraic geometry have a product defined by pointwise multiplication; as the values of these functions commute, the functions also commu ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Affine Scheme
In commutative algebra, the prime spectrum (or simply the spectrum) of a commutative ring R is the set of all prime ideals of R, and is usually denoted by \operatorname; in algebraic geometry it is simultaneously a topological space equipped with a sheaf of rings. Zariski topology For any ideal I of R, define V_I to be the set of prime ideals containing I. We can put a topology on \operatorname(R) by defining the collection of closed sets to be :\big\. This topology is called the Zariski topology. A basis for the Zariski topology can be constructed as follows: For f\in R, define D_f to be the set of prime ideals of R not containing f. Then each D_f is an open subset of \operatorname(R), and \big\ is a basis for the Zariski topology. \operatorname(R) is a compact space, but almost never Hausdorff: In fact, the maximal ideals in R are precisely the closed points in this topology. By the same reasoning, \operatorname(R) is not, in general, a T1 space. However, \operat ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Dual (category Theory)
In category theory, a branch of mathematics, duality is a correspondence between the properties of a category ''C'' and the dual properties of the opposite category ''C''op. Given a statement regarding the category ''C'', by interchanging the source and target of each morphism as well as interchanging the order of composing two morphisms, a corresponding dual statement is obtained regarding the opposite category ''C''op. (''C''op is composed by reversing every morphism of ''C''.) Duality, as such, is the assertion that truth is invariant under this operation on statements. In other words, if a statement ''S'' is true about ''C'', then its dual statement is true about ''C''op. Also, if a statement is false about ''C'', then its dual has to be false about ''C''op. (Compactly saying, ''S'' for ''C'' is true if and only if its dual for ''C''op is true.) Given a concrete category ''C'', it is often the case that the opposite category ''C''op per se is abstract. ''C''op need not b ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Prime Spectrum
In commutative algebra, the prime spectrum (or simply the spectrum) of a commutative ring R is the set of all prime ideals of R, and is usually denoted by \operatorname; in algebraic geometry it is simultaneously a topological space equipped with a sheaf of rings. Zariski topology For any ideal I of R, define V_I to be the set of prime ideals containing I. We can put a topology on \operatorname(R) by defining the collection of closed sets to be :\big\. This topology is called the Zariski topology. A basis for the Zariski topology can be constructed as follows: For f\in R, define D_f to be the set of prime ideals of R not containing f. Then each D_f is an open subset of \operatorname(R), and \big\ is a basis for the Zariski topology. \operatorname(R) is a compact space, but almost never Hausdorff: In fact, the maximal ideals in R are precisely the closed points in this topology. By the same reasoning, \operatorname(R) is not, in general, a T1 space. However, \operatorna ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Coslice Category
In mathematics, an overcategory (also called a slice category) is a construction from category theory used in multiple contexts, such as with covering spaces (espace étalé). They were introduced as a mechanism for keeping track of data surrounding a fixed object X in some category \mathcal. The dual notion is that of an undercategory (also called a coslice category). Definition Let \mathcal be a category and X a fixed object of \mathcalpg 59. The overcategory (also called a slice category) \mathcal/X is an associated category whose objects are pairs (A, \pi) where \pi:A \to X is a morphism in \mathcal. Then, a morphism between objects f:(A, \pi) \to (A', \pi') is given by a morphism f:A \to A' in the category \mathcal such that the following diagram commutes\begin A & \xrightarrow & A' \\ \pi\downarrow \text & \text &\text \downarrow \pi' \\ X & = & X \endThere is a dual notion called the undercategory (also called a coslice category) X/\mathcal whose objects are pairs (B, \p ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Structure Map
In mathematics, a canonical map, also called a natural map, is a map or morphism between objects that arises naturally from the definition or the construction of the objects. Often, it is a map which preserves the widest amount of structure. A choice of a canonical map sometimes depends on a convention (e.g., a sign convention). A closely related notion is a structure map or structure morphism; the map or morphism that comes with the given structure on the object. These are also sometimes called canonical maps. A canonical isomorphism is a canonical map that is also an isomorphism (i.e., invertible). In some contexts, it might be necessary to address an issue of ''choices'' of canonical maps or canonical isomorphisms; for a typical example, see prestack. For a discussion of the problem of defining a canonical map see Kevin Buzzard's talk at the 2022 Grothendieck conference. Examples *If is a normal subgroup of a group , then there is a canonical surjective group homomorphism ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Center Of A Ring
In algebra, the center of a ring ''R'' is the subring consisting of the elements ''x'' such that for all elements ''y'' in ''R''. It is a commutative ring and is denoted as Z(''R''); 'Z' stands for the German word ''Zentrum'', meaning "center". If ''R'' is a ring, then ''R'' is an associative algebra over its center. Conversely, if ''R'' is an associative algebra over a commutative subring ''S'', then ''S'' is a subring of the center of ''R'', and if ''S'' happens to be the center of ''R'', then the algebra ''R'' is called a central algebra. Examples * The center of a commutative ring ''R'' is ''R'' itself. * The center of a skew-field is a field. * The center of the (full) matrix ring with entries in a commutative ring ''R'' consists of ''R''-scalar multiples of the identity matrix. * Let ''F'' be a field extension of a field ''k'', and ''R'' an algebra over ''k''. Then . * The center of the universal enveloping algebra of a Lie algebra plays an important role in the re ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Tensor Product Of Modules
In mathematics, the tensor product of modules is a construction that allows arguments about bilinear maps (e.g. multiplication) to be carried out in terms of linear maps. The module construction is analogous to the construction of the tensor product of vector spaces, but can be carried out for a pair of modules over a commutative ring resulting in a third module, and also for a pair of a right-module and a left-module over any ring, with result an abelian group. Tensor products are important in areas of abstract algebra, homological algebra, algebraic topology, algebraic geometry, operator algebras and noncommutative geometry. The universal property of the tensor product of vector spaces extends to more general situations in abstract algebra. The tensor product of an algebra and a module can be used for extension of scalars. For a commutative ring, the tensor product of modules can be iterated to form the tensor algebra of a module, allowing one to define multiplication in the ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |