Elementary Reflector
   HOME



picture info

Elementary Reflector
In linear algebra, a Householder transformation (also known as a Householder reflection or elementary reflector) is a linear transformation that describes a reflection about a plane or hyperplane containing the origin. The Householder transformation was used in a 1958 paper by Alston Scott Householder. Definition Operator and transformation The Householder operator may be defined over any finite-dimensional inner product space V with inner product \langle \cdot, \cdot \rangle and unit vector u\in V as : H_u(x) := x - 2\,\langle x,u \rangle\,u\,. It is also common to choose a non-unit vector q \in V, and normalize it directly in the Householder operator's expression: :H_q \left ( x \right ) = x - 2\, \frac\, q \,. Such an operator is linear and self-adjoint. If V=\mathbb^n, note that the reflection hyperplane can be defined by its ''normal vector'', a unit vector \vec v\in V (a vector with length 1) that is orthogonal to the hyperplane. The reflection of a point x about thi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Linear Algebra
Linear algebra is the branch of mathematics concerning linear equations such as :a_1x_1+\cdots +a_nx_n=b, linear maps such as :(x_1, \ldots, x_n) \mapsto a_1x_1+\cdots +a_nx_n, and their representations in vector spaces and through matrix (mathematics), matrices. Linear algebra is central to almost all areas of mathematics. For instance, linear algebra is fundamental in modern presentations of geometry, including for defining basic objects such as line (geometry), lines, plane (geometry), planes and rotation (mathematics), rotations. Also, functional analysis, a branch of mathematical analysis, may be viewed as the application of linear algebra to Space of functions, function spaces. Linear algebra is also used in most sciences and fields of engineering because it allows mathematical model, modeling many natural phenomena, and computing efficiently with such models. For nonlinear systems, which cannot be modeled with linear algebra, it is often used for dealing with first-order a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Outer Product
In linear algebra, the outer product of two coordinate vectors is the matrix whose entries are all products of an element in the first vector with an element in the second vector. If the two coordinate vectors have dimensions ''n'' and ''m'', then their outer product is an ''n'' × ''m'' matrix. More generally, given two tensors (multidimensional arrays of numbers), their outer product is a tensor. The outer product of tensors is also referred to as their tensor product, and can be used to define the tensor algebra. The outer product contrasts with: * The dot product (a special case of "inner product"), which takes a pair of coordinate vectors as input and produces a scalar * The Kronecker product, which takes a pair of matrices as input and produces a block matrix * Standard matrix multiplication Definition Given two vectors of size m \times 1 and n \times 1 respectively :\mathbf = \begin u_1 \\ u_2 \\ \vdots \\ u_m \end, \quad \mathbf = \begin v_1 \\ v_2 \\ \vdots \\ v_n \en ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Tridiagonal
In linear algebra, a tridiagonal matrix is a band matrix that has nonzero elements only on the main diagonal, the subdiagonal/lower diagonal (the first diagonal below this), and the supradiagonal/upper diagonal (the first diagonal above the main diagonal). For example, the following matrix is tridiagonal: :\begin 1 & 4 & 0 & 0 \\ 3 & 4 & 1 & 0 \\ 0 & 2 & 3 & 4 \\ 0 & 0 & 1 & 3 \\ \end. The determinant of a tridiagonal matrix is given by the ''continuant'' of its elements. An orthogonal transformation of a symmetric (or Hermitian) matrix to tridiagonal form can be done with the Lanczos algorithm. Properties A tridiagonal matrix is a matrix that is both upper and lower Hessenberg matrix. In particular, a tridiagonal matrix is a direct sum of ''p'' 1-by-1 and ''q'' 2-by-2 matrices such that — the dimension of the tridiagonal. Although a general tridiagonal matrix is not necessarily symmetric or Hermitian, many of those that arise when solving linear algebra problems have one of t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hessenberg Matrix
In linear algebra, a Hessenberg matrix is a special kind of square matrix, one that is "almost" triangular. To be exact, an upper Hessenberg matrix has zero entries below the first subdiagonal, and a lower Hessenberg matrix has zero entries above the first superdiagonal. They are named after Karl Hessenberg. A Hessenberg decomposition is a matrix decomposition of a matrix A into a unitary matrix P and a Hessenberg matrix H such that PHP^*=A where P^* denotes the conjugate transpose. Definitions Upper Hessenberg matrix A square n \times n matrix A is said to be in upper Hessenberg form or to be an upper Hessenberg matrix if a_=0 for all i,j with i > j+1. An upper Hessenberg matrix is called unreduced if all subdiagonal entries are nonzero, i.e. if a_ \neq 0 for all i \in \. Lower Hessenberg matrix A square n \times n matrix A is said to be in lower Hessenberg form or to be a lower Hessenberg matrix if its transpose is an upper Hessenberg matrix or equivalently if a_=0 for al ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

QR Algorithm
In numerical linear algebra, the QR algorithm or QR iteration is an eigenvalue algorithm: that is, a procedure to calculate the eigenvalues and eigenvectors of a Matrix (mathematics), matrix. The QR algorithm was developed in the late 1950s by John G. F. Francis and by Vera N. Kublanovskaya, working independently. The basic idea is to perform a QR decomposition, writing the matrix as a product of an orthogonal matrix and an upper triangular matrix, multiply the factors in the reverse order, and iterate. The practical QR algorithm Formally, let be a real matrix of which we want to compute the eigenvalues, and let . At the -th step (starting with ), we compute the QR decomposition where is an orthogonal matrix (i.e., ) and is an upper triangular matrix. We then form . Note that A_ = R_k Q_k = Q_k^ Q_k R_k Q_k = Q_k^ A_k Q_k = Q_k^ A_k Q_k, so all the are Similar matrix, similar and hence they have the same eigenvalues. The algorithm is numerical stability, numerically stable b ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

QR Decomposition
In linear algebra, a QR decomposition, also known as a QR factorization or QU factorization, is a decomposition of a matrix ''A'' into a product ''A'' = ''QR'' of an orthonormal matrix ''Q'' and an upper triangular matrix ''R''. QR decomposition is often used to solve the linear least squares (LLS) problem and is the basis for a particular eigenvalue algorithm, the QR algorithm. Cases and definitions Square matrix Any real square matrix ''A'' may be decomposed as : A = QR, where ''Q'' is an orthogonal matrix (its columns are orthogonal unit vectors meaning and ''R'' is an upper triangular matrix (also called right triangular matrix). If ''A'' is invertible, then the factorization is unique if we require the diagonal elements of ''R'' to be positive. If instead ''A'' is a complex square matrix, then there is a decomposition ''A'' = ''QR'' where ''Q'' is a unitary matrix (so the conjugate transpose If ''A'' has ''n'' linearly independent columns, then the first ''n ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Numerical Linear Algebra
Numerical linear algebra, sometimes called applied linear algebra, is the study of how matrix operations can be used to create computer algorithms which efficiently and accurately provide approximate answers to questions in continuous mathematics. It is a subfield of numerical analysis, and a type of linear algebra. Computers use floating-point arithmetic and cannot exactly represent irrational data, so when a computer algorithm is applied to a matrix of data, it can sometimes increase the difference between a number stored in the computer and the true number that it is an approximation of. Numerical linear algebra uses properties of vectors and matrices to develop computer algorithms that minimize the error introduced by the computer, and is also concerned with ensuring that the algorithm is as efficient as possible. Numerical linear algebra aims to solve problems of continuous mathematics using finite precision computers, so its applications to the natural and social scienc ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Specular Reflection
Specular reflection, or regular reflection, is the mirror-like reflection (physics), reflection of waves, such as light, from a surface. The law of reflection states that a reflected ray (optics), ray of light emerges from the reflecting surface at the same angle to the surface normal as the incident ray, but on the opposing side of the surface normal in the plane formed by the incident and reflected rays. The earliest known description of this behavior was recorded by Hero of Alexandria (Anno Domini, AD c. 10–70). Later, Ibn al-Haytham, Alhazen gave a complete statement of the law of reflection. He was first to state that the incident ray, the reflected ray, and the normal to the surface all lie in a same plane perpendicular to reflecting plane. Specular reflection may be contrasted with diffuse reflection, in which light is scattered away from the surface in a range of directions. Law of reflection When light encounters a boundary of a material, it is affected by the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Matrix Determinant Lemma
In mathematics, in particular linear algebra, the matrix determinant lemma computes the determinant of the sum of an invertible matrix A and the dyadic product, uvT, of a column vector u and a row vector vT. Statement Suppose A is an invertible square matrix and u, v are column vectors. Then the matrix determinant lemma states that :\det(\mathbf + \mathbf^\textsf) = (1 + \mathbf^\textsf\mathbf^\mathbf)\,\det(\mathbf)\,. Here, uvT is the outer product of two vectors u and v. The theorem can also be stated in terms of the adjugate matrix of A: :\det(\mathbf + \mathbf^\textsf) = \det(\mathbf) + \mathbf^\textsf\mathrm(\mathbf)\mathbf\,, in which case it applies whether or not the matrix A is invertible. Proof First the proof of the special case A = I follows from the equality: : \begin \mathbf & 0 \\ \mathbf^\textsf & 1 \end \begin \mathbf + \mathbf^\textsf & \mathbf \\ 0 & 1 \end \begin \mathbf & 0 \\ -\mathbf^\textsf & 1 \end = \begin \mathbf & \mathbf \\ 0 & 1 + \m ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Determinant
In mathematics, the determinant is a Scalar (mathematics), scalar-valued function (mathematics), function of the entries of a square matrix. The determinant of a matrix is commonly denoted , , or . Its value characterizes some properties of the matrix and the linear map represented, on a given basis (linear algebra), basis, by the matrix. In particular, the determinant is nonzero if and only if the matrix is invertible matrix, invertible and the corresponding linear map is an linear isomorphism, isomorphism. However, if the determinant is zero, the matrix is referred to as singular, meaning it does not have an inverse. The determinant is completely determined by the two following properties: the determinant of a product of matrices is the product of their determinants, and the determinant of a triangular matrix is the product of its diagonal entries. The determinant of a matrix is :\begin a & b\\c & d \end=ad-bc, and the determinant of a matrix is : \begin a & b & c \\ d & e ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Involutory Matrix
In mathematics, an involutory matrix is a square matrix that is its own inverse. That is, multiplication by the matrix \bold A_ is an involution if and only if \bold A^2 = \bold I, where \bold I is the n \times n identity matrix. Involutory matrices are all square roots of the identity matrix. This is a consequence of the fact that any invertible matrix multiplied by its inverse is the identity.. Examples The 2\times2 real matrix \begina & b \\ c & -a \end is involutory provided that a^2 + bc = 1 . The Pauli matrices in are involutory: \begin \sigma_1 = \sigma_x &= \begin 0 & 1 \\ 1 & 0 \end, \\ \sigma_2 = \sigma_y &= \begin 0 & -i \\ i & 0 \end, \\ \sigma_3 = \sigma_z &= \begin 1 & 0 \\ 0 & -1 \end. \end One of the three classes of elementary matrix is involutory, namely the row-interchange elementary matrix. A special case of another class of elementary matrix, that which represents multiplication of a row ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]